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Sec. 2.2 Scale Analysis and Approximations of the 

Continuity Equation 
 

The governing equations of atmospheric motion and processes are based 

on the following physical laws (Ch. 2, Lin 2007):  

 

 (a) Newton’s second law of motion,  

 (b) Conservation of mass, and  

 (c) First law of thermodynamics.   

 

These laws are represented by the set of primitive equations that are 

comprised by  

 

 (a) Horizontal and vertical momentum equations  

 (b) Continuity equation, and  

 (c) Thermodynamic energy equation.  

 

Note that wave motions behave completely differently from mass 

transport.   

 

Briefly speaking, fluid particles do not necessarily follow the 

disturbance in wave motion, while they do always follow it in mass 

transport.  For example, air parcels associated with gravity waves may 

oscillate in the vicinity of the source or forcing region, but the gravity 

waves themselves may propagate to great distances from their origin.   

 

On the other hand, the air parcels within a cold pool generated by 

evaporative cooling - associated with falling raindrops beneath a 

thunderstorm - always move in concert with the density current. 

http://mesolab.org/


 

 

 

 2 

 

Considering an atmosphere on a planetary f plane, the momentum 

equations, continuity equation, and thermodynamic energy equation can 

be expressed in the following form (Lin 2007): 
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where  

zwyvxutDtD  ///// : (total or material  

 derivative) the change of a certain property within a fluid parcel 

following the motion. 

rzryrx FFF  and , , : viscous terms or frictional forces per unit mass in  

 the x, y, and z directions, respectively.   

pc : heat capacity of dry air at constant pressure (1004 J/kg-K), and  

q : diabatic heating rate in 
1 1J kg s 

.   

Other symbols are defined as usual (e.g., see Appendix A of Lin 2007).   

 

In the viscous sublayer, which is a very thin layer of O(cm) near the 

earth’s surface, the viscous terms may be represented by molecular 

viscosity in the form wvu 222  and , ,   , kinematic viscosity coefficient 

associated with molecular viscosity.  Note that is equal to  / , where 
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 is the dynamic viscosity coefficient and  is the air density.  At sea 

level,  has a value of about 126 1046.1  smx .   
 

The molecular viscosity is almost completely negligible in the 

atmosphere above the viscous sublayer, where momentum and heat 

transfers are dominated by turbulent eddy motion.  A number of 

parameterization schemes for turbulent eddy viscosity in the planetary 

boundary layer will be discussed in Ch. 5 of Holton (2005).   
 

The equation set (2.2.1-2.2.3) with no Coriolis terms is often referred to 

as the Navier-Stokes equations of motion.  The diabatic heating rate may 

be taken to represent, for example, surface sensible heating, elevated 

latent heating, or cloud-top radiative cooling.   
 

Note that the viscous terms on the right-hand side of Eqs. (2.2.1) and 

(2.2.2) can be approximated by Rayleigh friction ( uo , vo ), while 

the diabatic heating term of Eq. (2.2.5) can be approximated by the 

Newtonian cooling ( o ), as is done in some theoretical studies to 

simplify the above system of governing equations.  The coefficient o  is 

determined by the e-folding time scale of the disturbance.   

 

In the above system, Eqs. (2.2.1) - (2.2.5), there are seven unknowns 

represented by five equations.  In order to close the system, we need two 

additional equations. Two equations can be used to close the system:  

 

(1) The equation of state for dry air (which is well represented by an 

ideal gas law), 
  

  TRp d  (2.2.6) 

 (2)  The Poisson’s equation  

  , (2.2.7) 

 where 
     

pd cR

o ppT
/

)/(

http://mathworld.wolfram.com/Navier-StokesEquations.html
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: potential temperature (the temperature a dry air parcel would 

be when it is taken to 1000 mb) 

: a constant reference pressure level (normally chosen as 1000  

 mb) and  

: the gas constant for dry air (287 J/kg-K).   
 

For a moist atmosphere, the temperature in Eq. (2.2.6) is replaced by the 

virtual temperature, which takes into account the moist effects due to 

latent heat release, and the density is replaced by the total density, which 

is a sum of the dry air density and the total water density. 
 

To formulate a more complete atmospheric system, we need to include 

nonlinear advective accelerations, viscosity and conservation equations 

for water substances (e.g. water vapor, cloud water, rain, ice, snow, and 

hail) in addition to the system of Eqs. (2.2.1) – 

(2.2.5). 

  

 Derivation of Continuity Equation 
2.5.1 A Eulerian Approach 

 

 
 
A simple alternative for this Eulerian approach is to  
 

(a) move the (x, y, z) to the center of the left side of the control volume, and  

(b) replace the mass inflow and outflow in Fig. 2.5 by 𝜌𝑢 and 𝜌𝑢 +
𝜕

𝜕𝑥
(𝜌𝑢)𝛿𝑥, 

respectively. 

op
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                   𝜌𝑢                                                      𝜌𝑢 +
𝜕

𝜕𝑥
(𝜌𝑢)𝛿𝑥 

 

 
Because the area of each of these faces is yz, the net rate of mass 

flow into the volume due to the x velocity component is 
 

                                  [𝜌𝑢]𝛿𝑦𝛿𝑧 − [𝜌𝑢 +
𝜕

𝜕𝑥
(𝜌𝑢)] 𝛿𝑦𝛿𝑧 = −

𝜕

𝜕𝑥
(𝜌𝑢)𝛿𝑥𝛿𝑦𝛿𝑧  

 

Similar expressions obviously hold for the y and z directions.  Thus, 

the net rate of mass inflow is  
 

    − [
𝜕

𝜕𝑥
(𝜌𝑢) +

𝜕

𝜕𝑦
(𝜌𝑣) +

𝜕

𝜕𝑧
(𝜌𝑤)] 𝛿𝑥𝛿𝑦𝛿𝑧  

 

            Thus, the local rate of change of the mass of the control volume is 

        
𝜕𝑚

𝜕𝑡
= − [

𝜕

𝜕𝑥
(𝜌𝑢) +

𝜕

𝜕𝑦
(𝜌𝑣) +

𝜕

𝜕𝑧
(𝜌𝑤)] 𝛿𝑥𝛿𝑦𝛿𝑧 

   

  Dividing the above equation by 𝛿𝑥𝛿𝑦𝛿𝑧 (=𝛿𝑉) leads to  

 

        
𝜕𝜌

𝜕𝑡
= − [

𝜕

𝜕𝑥
(𝜌𝑢) +

𝜕

𝜕𝑦
(𝜌𝑣) +

𝜕

𝜕𝑧
(𝜌𝑤)] 

 Or  

        
𝜕𝜌

𝜕𝑡
+ ∇ ∙ 𝜌𝑼 = 0    (2.30) 

 Eq. (2.30) is the mass divergence form of the continuity equation.   
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 Scale Analysis of the Continuity Equation   

Letting ),,,(')(),,,( zyxtzzyxt   , the continuity equation (2.2.4) 

reduces to the perturbation form 
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 Characteristic magnitudes (m/s2) for midlatitude synoptic motion: 

  U ~ 10 m/s, L ~ 1000 km (106 m), o ~ 1 kg/m3, ’ ~ .01 kg/m3, 

  H ~ 10 km, Lz ~ 10 km (deep convection) or 1 km (shallow convection), 

  W ~ 0.01 m/s  

  

It is important to distinguish the difference between the scale height 

(H) and the vertical scale of convection or disturbance (Lz); the 

former (H) is controlled by the basic structure of the atmosphere 

while the latter (Lz) is controlled by the fluid motion.   
 

Anelastic and incompressible approximations to the continuity 

equation can also be obtained by applying scale analysis to (2.2.17).  

Unlike that used in Holton (2004, Ed. 4), here we make a difference 

in H and Lz, as mentioned above. 
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For shallow convection or disturbance 

 10-7          10-7 (or 10-7)     10-6         10-5 (or10-5)   10-7(or 10-7)  (2.2.23) 

For deep convection or disturbance 

 10-7          10-7 (or 10-8)     10-6         10-5 (or10-6)   10-7(or 10-8) (2.2.24) 

 

 Anelastic approximation   

Keeping the terms of O(10-5) & O(10-6) leads to the anelastic (deep) 

convection continuity equation: 

 

 0 V
dz

dw 


.                                                  (2.3.1)’ 

The effect of this approximation is to eliminate all waves with very high 

propagation speeds associated with rapid (adiabatic) compression and 

expansion of the fluid.   

 

The above anelastic (deep-convection) continuity equation may also be 

written as 

 

 , (2.3.1) 

or 

 , (2.3.2) 

since the scale height is taken to be a constant.  Equations (2.3.1) and 

(2.3.2) may also be expressed in an alternative form: 

  

 . (2.3.3) 
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Note that (2.3.3) is linked with (2.3.2) when the density decays 

exponentially with height, with an e-folding value of scale height H.   
 

Equations (2.3.1), (2.3.2), or (2.3.3) are called the anelastic or deep 

convection continuity equations.   

 

 Incompressible approximation                                                      

If we keep only the largest terms (O(10-5)), it leads to the incompressible 

(shallow convection) continuity equation: 
 

 0 V . (2.3.4) 

This means that conservation of mass has become conservation of 

volume because density is treated as a constant.  Thus, volume is a good 

proxy for mass under this approximation.   
 

[Reading Assignment] (From Ch. 2 of Lin 2007) 
 

“Equation (2.3.3) was first proposed by Batchelor (1953), who defined to be the density in an 

adiabatic, stably stratified, horizontally uniform reference state.  The name anelastic was coined by Ogura 

and Phillips (1962), who derived (2.3.3) through a rigorous scale analysis, along with approximate forms 

for the momentum and thermodynamic energy equations.   

Their scaling analysis assumes that: (a) all deviations of the potential temperature '  from some 

constant mean value 
o are small, and (b) the time scale of the disturbance is comparable to the time scale 

for gravity wave oscillations.  The terms that are neglected in the original anelastic equations are an order 

o /'  smaller than those that are retained.  Thus, in the case of dry convection (where mixing will 

keep the environmental lapse rate close to the adiabatic lapse rate),   will be small and the anelastic 

equations can be used to represent nonacoustic modes with complete confidence.  For deep, moist 

convection or gravity wave propagation, however, the mean-state static stability can be sufficient to make 
  rather large.  For example, the '  variations across a 10 km deep isothermal layer may reach as high 

as 40% of the mean 
o .  

Equation (2.3.1) may be further simplified, by assuming that the vertical scale (Lz) of the mesoscale 

disturbance is much smaller than the scale height of the basic state atmosphere, ,  

 .                       (2.3.4) 

The above equation is called the incompressible or shallow convection continuity equation.  This means 

that conservation of mass has become conservation of volume because density is treated as a constant.  

Thus, volume is a good proxy for mass under this approximation.   

Again, it is important to distinguish the difference between the scale height (H) and the vertical scale of 

convection or of the disturbance (Lz) because the scale height is controlled by the basic structure of the 

atmosphere, instead of by the fluid motion.  Anelastic and incompressible approximations to the 

continuity equation can also be obtained by applying scale analysis to 2.2.17, similar to that used in 

Holton (2004), except that it is necessary to differentiate H and Lz, as mentioned above.”  
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