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Chapter 7 Mesoscale Instabilities 

 Observational, theoretical and numerical studies have found that 
instabilities play important roles in numerous mesoscale 
phenomena, such as  
 
Squall lines, rain bands, mesoscale convective complexes (MCC), 
mesoscale convective systems, mesoscale fronts, mesoscale 
cyclogenesis, clear air turbulence (CAT), billow clouds, heavy 
orographic precipitating systems, etc.   
 

 Thus, a fundamental understanding of the instabilities occurring at 
mesoscale and those that influence mesoscale circulations is 
essential to comprehend these phenomena.   
 

 For example, the momentum and/or potential energy associated 
with the airflow might be transferred into perturbation kinetic 
energy through instabilities, which may then disturb the flow or 
help release latent heating, dramatically disturbing the airflow. 
 

 As discussed in Chapter 1 (Lin 2007), mesoscale instabilities may 
serve as one type of energy generation mechanism for mesoscale 
circulations and weather systems.   
 

 Although instabilities associated with the mean wind velocity or 
thermal structure of the atmosphere are a rich energy source of 
atmospheric disturbances, the maximum growth rates of most 
atmospheric instabilities are either on the large scale, such as 
baroclinic and barotropic instabilities, or on the microscale, such as 
Kelvin-Helmholtz and static (gravitational) instabilities.   
 

 Symmetric instability appears to cover the mesoscale range in the 
sense that the projected horizontal scale of the slantwise circulation 
of the unstable mode is often in the mesoscale range. 
 

 Differences between moist and dry convection.   
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o In a dry atmosphere, convection includes both unstable updrafts 
and downdrafts and turbulent eddies, such as the boundary 
convection in the afternoon and Rayleigh-Bénard convection 
(Chandrasekar 1961) triggered by the thermal instability 
between two horizontal plates heated from below.   
 

o Normally, moist convection in the atmosphere behaves quite 
differently from dry convection has and the mesoscale cellular 
convection shown in Fig. 7.1, and is characterized by (Emanuel 
and Raymond 1984):  

(1) Strong, compact, turbulent, unstable, upward motion,  
(2) Weak, compensated, laminar, stable downward motion 

(over a wide area of the surroundings), and  
(3) Gravity or inertia-gravity waves generated outside and 

which propagate away from the convective region. 
 

o However, the differences described above may be due to the 
spatial distribution of the forcing.   
 

o For example, Figure 7.1 show an example of a mesoscale 
cellular convection occurred over the Atlantic Ocean observed 
over the Atlantic Ocean off the southeast coast of the United 
States on February 19, 2002, as viewed by satellite Terra.   
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Fig. 7.1: Open cell cloud formation observed over the Atlantic Ocean off the southeast coast 
of the United States on February 19, 2002, as viewed by satellite Terra.  This type of clouds 
is an atmospheric manifestation of Ralyleigh-Bénard convection is known as mesoscale 
cellular convection.  It normally forms as the cold air passes over the warmer ocean waters.  
Notice the hexagonal open cells produced in the cloud-topped boundary layer and the 
convective clouds at the vertices of the hexagonal cells. (From Visible Earth, NASA) (Lin 
2007) 
 

• The open cells have downward motion and clear skies at the center of the 
cells. Notice the hexagonal open cells produced in the cloud-topped 
boundary layer and the convective clouds at the vertices of the hexagonal 
cells. 

• This type of clouds is an atmospheric manifestation of Rayleigh-
Bénard convection in the atmosphere.  It normally forms as the 
cold air passes over the warmer ocean waters.  Notice the 
hexagonal open cells produced in the cloud-topped boundary layer 
and the convective clouds at the vertices of the hexagonal cells.  

 

                                                

 

 
 

            A sketch of 2D Rayleigh–Bénard convection in 2D     Rayleigh–Bénard convection in 3D 
                 (http://en.wikipedia.org/wiki/Rayleigh%E2%80%93B%C3%A9nard_convection)     

  

 Animation of 2D Rayleigh-Benard convection:1 

 Animation of 2D Rayleigh-Benard convection: 2   

 Benard cell convection on a dishpan 

 
 
7.1 Wave Energy Transfer through Instabilities 
 
 The energy transfer among different forms, such as potential 

energy and kinetic energy associated with the basic [mean 
potential energy, mean kinetic energy] or perturbed 
[perturbation (eddy) potential energy, perturbation (eddy) 
kinetic energy] flows, and through different hydrodynamic 

http://en.wikipedia.org/wiki/Rayleigh%E2%80%93B%C3%A9nard_convection
http://www.youtube.com/watch?v=5ApSJe4FaLI
http://en.wikipedia.org/wiki/Rayleigh%E2%80%93B%C3%A9nard_convection
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instabilities may be understood by examining the linear energy 
equation.   

 
 The governing equations for a small-amplitude, inviscid, 

Boussinesq atmosphere on a planetary f-plane can be combined 
into a single equation for the vertical velocity, as derived in 
Chapters 2 & 3, 

 
With the Boussinesq approximation, the linearized perturbation 
equations, (2.2.14) – (2.2.18),  
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 As also mentioned in earlier chapters, this equation represents a 
mesoscale atmospheric system which may contain the following 
generation mechanisms of:   
 

• Pure and inertia-gravity waves  
• Static instability 
• Conditional instability 
• Potential (convective) instability  
• Kelvin-Helmholtz instability  
• Symmetric instability  
• Inertial instability  
• Baroclinic instability  
• Wave-CISK (conditional instability of the second kind)   

 

 Assuming 0=V  and adding the meridionally sheared zonal flow (
0≠yU ), Eq. (7.1.1) becomes 
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 is the total perturbation energy.   

 
The total perturbation energy consists of perturbation kinetic energy 
and perturbation potential energy, which are represented by the first 
and second terms inside the square bracket, respectively.   
 

 Taking the horizontal integration of Eq. (7.1.2) over a single 
wavelength for a periodic disturbance or from -∞ to +∞ for a 
localized disturbance in both x and y directions gives 
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Integrating (7.1.4) from the surface ( szz = ) to the top of the physical 
domain or a finite-area numerical model ( Tzz = ) yields 
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   (7.1.5) 
             
 where TE  is the domain-integrated total perturbation energy. 
  
 Term 1: Total rate of change in the total perturbation energy in the 

system.   
 

 Term 2: The vertical momentum flux transfer between the kinetic 
energy of the basic (mean) flow (Uz) and the perturbation wave 
energy (uw ).   
 
o When shear instability occurs, the energy is transferred from the 

basic state shear flow (Uz) to the perturbation (uw ).   
 
For a 2D, incompressible flow, one may define a perturbation 
streamfunction ψ  such that,  
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since 0)/()/( =∂∂+∂∂= dzzdxxd ψψψ  on a constant streamline line ψ .   
 
This in turn implies that when there exists shear instability (i.e. 
term 1 > 0) under the situation of 0>zU , we have on average 
over the vertical plane 
 

 0<




∂
∂

ψx
z

. (7.1.8) 

 
o Therefore, the growing wave in an adiabatic stably stratified 

flow must have a phase tilt in an opposite direction of the shear 
vector, i.e., an upshear phase tilt (Fig. 7.2). This also implies 
that the updraft has an upshear tilt since it is out of phase with 
the stream function by a factor of 2/π .    

 
 

Fig. 7.2:  A sketch of the basic wind profile and the upshear tilt of the perturbation 
streamfunctions (solid) and updraft (dashed) associated with an unstable growing gravity wave in 

U(z)
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a stably stratified flow.  The perturbation wave energy is converted from the basic flow shear. 
(From Lin and Chun, 1993) (Lin 2007) 
 
(Animations: Ex. 1; Ex. 2; Reference: K-H instability) 
 
 
 
 
 

Billow clouds often form along shear 
layers (separating air masses of 
differing moisture and temperature), 
and are thus subject to the Kelvin-
Hlemholtz instability, particularly for 
sufficiently high shear velocities 
(photo credit: Brooks Martner, 
NOAA/ETL). 
 

          Billow clouds        
Jupiter's Great Red Spot is a vortex tube 
(cat's eye) suistained by transonic shear 
layers in the planet's atmosphere.  Note the 
smaller-amplitude K-H instabilities in the 
surrounding gas, as well as within the Red 
Spot itself (photo credit: NASA). 
 
 

        Jupiter’s Great Red Spot 
 
 Term 3: When inertial instability occurs, the kinetic energy 

associated with the basic state shear (Uy) transfer to perturbation 
wave energy (uv).    

 
The argument for horizontal phase tilt is similar to the above 
argument for shear instability.   
 

 Term 4: The energy exchange between the basic state vertical 
shear (Uz), which is supported by the baroclinicity (horizontal 
temperature gradient) through thermal wind balance, and the 
perturbation heat flux (  θv ).     
 

http://en.wikipedia.org/wiki/Kelvin%E2%80%93Helmholtz_instability
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Under this situation, available potential energy is stored in the 
system, which is transferred to perturbation kinetic energy when 
baroclinic instability occurs.   
 
This argument is used to explain why the trough tilts westward 
with height during the midlatitude cyclogenesis. 
   

 Term 5: The forcing from the upper boundary condition. 
 

 Term 6: The forcing from the lower boundary.   
 

 Term 7: The contribution from diabatic source or sink to total 
perturbation energy. 

  
 
[Section 7.2 is for Reading Assignment] 
7.2 Integral Theorems of Stratified Flow 
 
7.2.1 Governing equations 
 
Consider the following inviscid, nonrotating, Boussinesq fluid system 
with all the nonlinear and inhomogeneous terms lumped into source 
terms on the right side of the governing equations, 
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  perturbation Reynolds stress,  

Q      diabatic heating, and  
H   effective heating, which is composed by the diabatic 

heating and turbulent heat fluxes.   
 

  
 Considering a 2D flow and taking the normal mode approach by 

assuming 
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 Defining a new variable h as 
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 It can be derived from (7.2.11), 
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where *h is the complex conjugate of h, which is assumed to be 0 at z=0, 
∞.  Note that the term involving 2N  does not appear in (7.2.15) because 
it has no imaginary part.  Substituting ir iccc +=  into (7.2.15) and taking 
the imaginary part yields 
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Case (i): No forcing 
  
 Eq. (7.2.16) is reduced to 
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 In order for instability to occur, ic  must be greater than 0.   
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This implies that term )( Ucr −  must change sign somewhere between 

0=z  and ∞ because the term in the square bracket is always positive. 
Therefore, there exists a critical level at which rcU =  in order for 
instability to occur in a two-dimensional, nonrotating flow. 

  
[For reference] 
Case (ii): with only thermal forcing, Eq. (7.2.16) reduces to 
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Assume 

 wQeH iθ= . (7.2.19) 
After substituting Eq. (7.2.19) into Eq. (7.2.18), the right hand side of Eq. (7.2.18) becomes 
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If the heating is in phase with vertical velocity everywhere, i.e. 0=θ , then  
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This implies that either 0=ic , where there is no amplification or instability, or Ucr = at certain 
level, where a steering or critical level exists.  This leads us to Bolton's theorem: If a diabatic forcing 
is to generate an amplifying, non-steering level perturbation, the forcing must be somewhat out of 
phase with the vertical velocity (Bolton, 1980a; Moncrieff 1978).   

 
 
7.2.2 Miles' Theorem 

For a two-dimensional, nonrotating, stratified shear flow with 
no forcing, Eq. (7.2.14) becomes 
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with 0)()( 21 == zhzh  as boundary conditions. Note that  
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If the flow is unstable, then c will be complex and 0≠− cU  for 
any height z.   
 
Letting cUGh −= /  and substituting it into the above equation 
gives 
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Since the flow is unstable, it requires that 0>ic .  [Remember we 
assume that )( ˆ ctxike −= φφ in (7.2.10).] 
 
The above equation therefore implies that 4/1<Ri at some level 
between 1z  and 2z , where 22 / zUNRi ≡ is the Richardson number.   
 
Thus, for instability to occur, it is necessary that 4/1<Ri
somewhere in the fluid.  On the other hand, if 4/1≥Ri everywhere 
in the fluid system, then the fluid system is stable.  This is 
referred to as Miles’ Theorem.   

 
7.2.3 Howard's Semicircle Theorem 

Consider Eq. (7.2.11) with no forcing,  
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Using the vertical displacement η  and substituting its relationship with w, 
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The boundary conditions are 0ˆ =η at 1zz = and 2z .   

Multiplying Eq. (7.2.28) by the conjugate of η̂  (i.e. *η̂ ) and then integrating from 1z to 2z leads to 
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Substituting ir iccc +=  into the above equation and then separating the real and imaginary parts 
yields  
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Again, for instability to occur, we require 0>ic .  In turn, with (7.2.32), Eq. (7.2.31) requires that 
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Equations (7.2.30) and (7.2.33) imply that 
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Since the last term on the left side of the above equation and the integration of R with respect to z are 
both positive, we require that 

 [ ] [ ]222 2/)(2/)( bacbac ir −≤++− . (7.2.36) 

This leads us to the Howard semicircle theorem:  The complex 
phase speed, c, of an unstable normal mode must lie within the 
semicircle enclosed by Umin (i.e. a) and Umax (i.e. b).  The 
Howard semicircle theorem can also be sketched as shown in 
Fig. 7.3. 

 
 
Fig. 7.3: A sketch of the Howard’s semicircle theorem. 
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7.3 Static, Conditional, and Convective Instabilities 
 
7.3.1 Static Instability 
 
 Static instability is also referred to in the literature as buoyant 

instability and gravitational instability, and describes an atmospheric 
state in which an air parcel will accelerate away from its original level 
due to the density difference between itself and its environment.   

 
 It can be derived that (see Lin 2007, Holton 2004) 
 
 ( )2

d
g gN

z T
θ γ

θ
∂

= = Γ −
∂

, (7.3.5) 

 
where  
 N : Brunt-Vaisala (buoyancy) frequency,  
 /T zγ ≡ −∂ ∂ :  observed environmental (actual) lapse rate  
 pd cg /=Γ :  dry lapse rate.   
The overbar represents values of the environmental air.   

 
The stability criteria for the displacement of a dry or unsaturated air 
parcel are 
 
 dγ < Γ : absolutely stable, 
 dγ = Γ : dry neutral, (7.3.6) 
 dγ > Γ : dry absolutely unstable. 
  
The vertical motion of the air parcel follows 
  
 g

z
p

Dt
zD

Dt
Dw

−
∂
∂

−==
ρ

δ 1
2

2

, (7.3.1) 

 
where ρ  and p are the density and pressure of the air parcel, 
respectively.   
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According to parcel theory, the pressure of the air parcel adjusts 
immediately to the pressure of its environment ( p ), i.e. pp = , which 
leads to 
 
 bg

Dt
zD

Dt
Dw

≡






 −
==

ρ
ρρδ  2

2

, (7.3.2) 

 
where b is the buoyancy or the buoyancy force per unit mass, and the 
overbar denotes the environmental value.  In deriving the above 
equation, we have assumed the environmental atmosphere is in 
hydrostatic balance.   
 
Thus, (7.3.2) indicates that the vertical acceleration of the air parcel is 
controlled by the buoyancy force, ]/)[( ρρρ −g .  It can be derived that 
the buoyancy force (the right hand side of (7.3.2)), is approximately 
equal to ]/)[( θθθ −g .  At 0=z , the air parcel is assumed to have the 
same potential temperature (θ ) as that of its environment (θ ).   
 
It can be derived 
 

 0N 2
2

2

=+ z
Dt

zD δδ . (7.3.4) 

 
The Brunt-Vaisala frequency measures the static stability of the air 
parcel’s environment and is related to the change of the air parcel’s 
buoyancy in relation to height, 

 

 
z

g
z
bN

∂
∂

=
∂
∂

−=
θ

θ
2 . (7.3.5) 

 
It can be easily proven that the criteria for static stability, static 
neutrality, and static instability are: 02 >N , 02 =N , and 02 <N , 
respectively.   
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The static instability acts on a horizontal scale of tens to thousands of 
meters.  Static and shear instability produce most of the small-scale 
turbulence in the troposphere.   
 

The stability criteria for dry air may also be determined by the 

vertical gradient of the environmental potential temperature:  
  

 2 0N > , dγ < Γ , or / 0zθ∂ ∂ > :  absolutely stable, 
 2 0N = , dγ = Γ , or / 0zθ∂ ∂ = : dry neutral,  

 2 0N < , dγ > Γ , or / 0zθ∂ ∂ < : dry absolutely unstable.                              (7.3.6) 

 
In the above criteria, z∂∂ /θ can be replaced by the dry Brunt-
Vaisala frequency (N).  The dry absolute instability is also 
referred to as dry gravitational instability in the literature.   

  

 The vertical acceleration is contributed by the dynamic pressure 
( 'dp ) and buoyancy pressure ( 'bp ).  The dynamical pressure 
arises from the flow field differences created by the disturbance, 
and buoyancy pressure is generated by the vertical buoyancy 
gradient. 
 

 Taking these effects into consideration, the vertical momentum 
equation can be written as 

 

 







∂

∂
−+

∂
∂

−=
z

pb
z

p
Dt
Dw b

o

d

o

'1'1
ρρ

, (7.3.8) 

 222 '1 ω
ρ

−=∇− Dpd
o

, (7.3.9) 

 
z
bpb

o ∂
∂

−=∇− '1 2

ρ
. (7.3.10) 
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 where  
   D : total deformation and  
   ω : 3D vorticity vector.   
  2 2 2 2  ( ) ( ) ( )y z z x x yw v u w v u= − + − + −ω  

  
2 2 2 2 2 2 2 2 2 2

2 2 2

 ( ) ( ) {( )

                                 ( ln / ) ( ln / ) }
x y z x y z x y zD u u u v v v w w w

d dz w d dz wρ ρ

= + + + + + + + +

− ⋅∇ −v
 

 
 The first term on the right side of (7.3.10) is due to the dynamic 

perturbation pressure, which is independent of the 
thermodynamic base state.   
 

 The buoyancy should include both terms inside the bracket on 
the right side of (7.3.10) (Doswell and Markowski 2004).   

  

 It has been proposed and observed in the real atmosphere that 
moist absolute instability may be created and maintained as 
mesoscale convective systems develop (Bryan and Fritsch 
2000).  

 

 A strong, mesoscale, nonbuoyancy-driven ascent, such as 
mechanical lifting along surface-based outflow layers, frontal 
zones, or an elevated terrain, may bring a conditionally unstable 
environmental layer to saturation faster than small-scale, 
buoyancy-driven convective elements are able to overcome the 
unstable state.  

 
 In addition, the lifting of a moist absolutely unstable layer 

(MAUL) tends to warm the environment, causing a reduction in 
the temperature difference between the environment and 
vertically displaced parcels, and thereby decreasing the 
buoyancy of convective parcels and helping to maintain the 
MAUL (Bryan and Fritsch 2000).   
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 Figure 7.4 illustrates how, in an idealized convective system, a 

MAUL forms ahead of a density current created through slab 

convective overturning.   

 
 
Fig. 7.4: A schematic of the formation of a MAUL through slab convective overturning.  
Wind vectors relative to the outflow boundary are denoted by arrows, cloud boundaries 
are denoted by scalloped lines, eθ contours (every 4 K) are denoted by solid lines, the 
outflow boundary or frontal zone is denoted by heavy solid line, midlevel layer of low eθ

is highlighted by light shading, and the MAUL is depicted by dark shading.  (From Bryan 
and Fritsch 2000) 
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7.3.2 Conditional Instability 

 

 
 
Fig. 7.5: Example of a sounding with conditional instability displayed on a skew-T log-p 
thermodynamic diagram.  The lifting condensation level (LCL), level of free convection 
(LFC), and level of neutral buoyancy (LNB) for the air parcel originated at A are denoted 
in the figure. The convective available potential energy (CAPE) is the area enclosed by 
the temperature curve (thick dashed line) and moist adiabat (dot-dashed curve) in 
between LFC and LNB, while the convective inhibition is the area enclosed the 
temperature curve and dry adiabat (below LCL) and moist adiabat (above LCL) in 
between the surface and the LFC.   
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 ∫∫∫ ∫ 






 −
=







 −
=







 −
==
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z

z

z

z

z

z

z

z
dzgdz

T
TTgdzgdzBCAPE     

θ
θθ

ρ
ρρ .  

  (7.3.17) 

The moist adiabatic lapse rate 

 

 
1 ( / )( / )

d
s

p vs

dT
dz L c dq dT

Γ
Γ ≡ − =

+
, (7.3.18) 

where dΓ is the dry adiabatic lapse rate,  
  L is the latent heat of condensation or sublimation, and  
  vsq is the saturation water vapor mixing ratio.   
 

CIN:  The negative area represents the energy needed to lift an air 
parcel to its LFC and is also known as the convective inhibition 
CIN. Mathematically, CIN may be defined as 
 

 ∫ 






 −
−=

LFC

i

z

z
dz

T
TTgCIN  . (7.3.22) 

 

Thus, the CIN is the energy required to lift an air parcel vertically 
and pseudoadiabatically to its level of free convection. 
 

The maximum updraft can may be estimated by 

 CAPEw 2max = .   

When rain evaporates in sub-saturated air or solid precipitate 
(snow or hail) melts at the melting level, a downdraft will be 
generated by the cooled air.  The maximum downdraft may be 
estimated as iDCAPEw 2max =− , where DCAPEi is the downdraft 
convective available potential energy and is defined as 
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 ∫ 






 −
−= s

i

z

zi dz
T

TTgDCAPE  , (7.3.23) 

where sz is normally the surface or the level at which an air parcel 
descends from the original level iz , allowing a neutral buoyancy to 
be achieved.  Cooling the parcel to saturation via the wet-bulb 
process and then descending it saturated- or pseudo-adiabatically, 
leaving enough evaporation to keep the air parcel saturated will 
allow one to obtain the parcel temperature (e.g. Emanuel 1994).   
  

 The criterion for conditional instability may also be determined 
via the vertical gradient of the saturation equivalent potential 
temperature ( *

eθ ), which is defined as the equivalent potential 
temperature of a hypothetically saturated atmosphere.  This 
hypothetical atmosphere has the same thermal structure as the 
actual atmosphere.  
  

 In other words, the *
eθ can be defined as the equivalent potential 

temperature the air parcel would have if it were saturated at the 
same pressure and temperature, 
 

 )/exp(* TcLq pvse θθ = . (7.3.24) 

 

 It can be derived 

 0 
*

*2

2

=







∂

∂
+ z

z
g

Dt
zD e

e

δθ
θ

δ  

Therefore, the conditional stability criterion for a saturated layer 
of air becomes 
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






<
=
>

∂
∂

unstablelly conditiona        0
neutrallly conditiona        0
stablelly conditiona        0

   
*

z
eθ  (7.3.29)  

  

Based on the above discussion, there exist six static stability 
states for dry and moist air: 
 1) absolutely stable  sγ < Γ  , 
 2) saturated neutral  sγ = Γ ,  
 3) conditionally unstable  s dγΓ < < Γ , (7.3.30) 
 4) dry neutral dγ = Γ ,  
 5) dry absolute unstable dγ > Γ , 
 6) moist absolutely unstable s sγ > Γ . 
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7.3.3 Potential Instability 

 Potential instability is also referred to as convective 
instability in the literature, and describes a condition in which 
an atmospheric layer becomes unstable statically after lifting.   

 It is based on layer theory. 

 
Fig. 7.6: Illustration of potential (convective) instability by lifting an initially absolute stable layer 
AB with 0e zθ∂ /∂  < .  The top of the layer (B) follows a dry adiabat to saturation at B’, while the 

bottom of the layer becomes saturated earlier and then follows moist adiabat to A’.  The lapse rate 
of the final saturated layer (A’B’) is greater than the moist adiabat, thus is unstable.  (Adapted 
after Darkow 1986)   

 

 The criteria for potential (convective) instability may be 

expressed in terms of the equivalent potential temperature. 

 

  






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=
>

∂
∂

unstabley potentiall      0
neutraly potentiall      0
stabley potentiall      0 

     
z

eθ  (7.3.31) 
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Example of Potential (Convective) Instability from soundings: 
Miller Type I “loaded gun sounding”: 
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Loaded gun sounding provides an environment conducive 
to “potential (convective) instability”, instead of 
“conditional instability”, thus nothing to do with CAPE! 
 

However, if a sounding satisfies both PI and CI (large 
CAPE+forcing to lift to LFC), then the convection being 
triggered could be very severe! 

Miller Type I “loaded gun sounding” 
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7.4 Kelvin-Helmholtz Instability 

  

 
Fig. 7.8: A sketch illustrates the growth of a sinusoidal disturbance to an initially uniform 
vortex sheet (dashed) with positive vorticity normal to the paper.  The local strength of 
the vortex sheet is represented by the thickness of the sheet.  The curved arrows indicate 
the direction of the self-induced movement of the vorticity in the sheet, and show (a) the 
accumulation of vorticity at points like A and (b) the general rotation about points like A, 
which together lead to exponential growth of the disturbance.  (Adapted after Batchelor 
1967 and Drazin and Reid 1981) 
 
 

 
 
Fig. 7.9: An example of breaking Kelvin-Helmholtz waves in clouds (billow clouds) 
formed over Laramie, Wyoming, USA. (Photo by Brooks Martner, NOAA 
Environmental Technology Laboratory) 

 

 The shear instability occurs in a stratified fluid flow in vertical 
is called K-H instability.  The criterion for the K-H instability to 
occer is based on Miles’ theorem: 4/1<Ri somewhere in the 
stratified fluid is a necessary condition for instability to occur.   
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 The K-H instability can also be understood by using the energy 
argument presented below (as characterized by Chandrasekhar 
1961). To quantify the effects of buoyancy and vertical shear, 
we consider two neighboring fluid parcels of equal volumes at 
heights z and zz δ+ and interchange them. The work Wδ that 
must be done to incur this interchange against gravity is given 
by 

 
 zgW δρδ   −=∆ ,  (7.4.1) 
 

where zdzd δρρδ )/(= is the difference in the basic density at the 
two heights. The kinetic energy per unit volume available to do 
this work is given by 
 

 
2

2 2 21 1 [ ( )] 1( ) ( )
2 2 2 2 4

U U UK U U U Uρ δρ ρ δ ρ δ+ + ∆ = + + − = 
 

.  (7.4.2) 

                 1                   2                      3 
 

In (7.4.2), terms 1 and 2 respectively represent the kinetic 
energies of air parcels 1 and 2 before the interchange, while 
term 3 represents the kinetic energy of the air parcels after the 
interchange.  A necessary condition for this interchange, and 
thus for instability, is that KW ∆≤∆ somewhere in the flow: 

  
 

2

2 2

( / ) / 1
( / ) 4z

N g d dzRi
U dU dz

ρ ρ−
≡ = < .  (7.4.3) 
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7.5 Inertial Instability 

  

 For typical atmospheric conditions 02 >N , the vertically 
displaced air parcel either returns to its original position or 
acts to stabilize vertical displacement.   

 Analogous to the static instability, rotation tends to return the 
horizontally displaced air parcel to its original position or 
stabilize the displacement.   

 This is similar to how buoyancy tends to return or stabilize 
the vertically displaced air parcel.  This type of instability is 
called inertial instability.   

 We have inertial instability if the horizontally displaced 
parcel accelerates away from its original position.   

 
[ref] The equations of motion for an inviscid, Boussinesq fluid in the cylindrical polar 
coordinates ) , ,( zr θ may be written as 

 
r
p

r
V

Dt
Du

o ∂
∂

−=−
ρ
12 , (7.5.1) 

 
θρ ∂

∂
−=+

p
rr

uV
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o

1 , (7.5.2) 

 
z
p

Dt
Dw

∂
∂

−=
ρ
1 , (7.5.3) 

where r is the radius or distance from the axis of rotation, ( wVu  , , ) are the radial, 
azimuthal (tangential) and vertical velocities, respectively, and the total derivative is 
defined as / / / /D Dt t u r w z ≡ ∂ ∂  +  ∂ ∂  +  ∂ ∂ .   
The equation of mass conservation is 

 0=
∂
∂

++
∂
∂

z
w

r
u

r
u

. (7.5.4) 

Since the tangential velocity is related to angular momentum per unit mass (M) and 
angular velocity (Ω ) by 2rVrM Ω=≡ , Eq. (7.5.2) can be rewritten as 
 0)(

==
Dt
VrD

Dt
DM , (7.5.5) 

Thus the angular momentum is conserved for an axisymmetric motion in an inviscid 
fluid.  Note that the circumference around the circle of radius r is Mπ2 .   
 
The mean state is assumed to have no radial acceleration.  In other words, it is said to be 
in cyclostrophic flow balance (e.g. see Holton 2004), meaning that the pressure gradient 
force in the environment is balanced by the centrifugal force 
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o ∂
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−=−=−
ρ
12

3

2 . (7.5.6) 

According to parcel theory, the motion does not perturb the pressure field of the 
environment.  It is from this theory that we make our assumptions.  
 
 Thus, (7.5.1) becomes 
 ( )22

3

2 11 MM
rr

V
r
p

Dt
Du

o

−=+
∂
∂

−=
ρ

. (7.5.7) 

To illustrate the concept of inertial stability, let us consider that the square of 
environmental angular momentum ( 2M ) increases with the radius and the vortex circular 
motion is assumed to be in solid body rotation, as shown in Fig. 7.10.   

 

Fig. 7.10: Schematic representation of an inertially stable system of fluid confined by a rotating cylinder.  
The square of environmental angular momentum ( rruM Ω=≡ θ ) is 
assumed to increase with radius.  (Adapted after Emanuel 1994) 
 

 Now consider a ring of fluid displaced radially outward.   
 The conservation of angular momentum ( 2rVrM Ω=≡ ) 

provides less angular velocity ( Ω ) and centrifugal force 
for the tube than that which is required to balance the 
local pressure gradient force in the new position.  This 
forces the air tube to accelerate back toward its original 
position, creating an inertially stable system.   
 

 It can be derived,  

 
2

3
1

o

Du M r
Dt r r

δ∂
= −

∂
   (7.5.8) 

at rro δ+ .  Note that u is the radial velocity defined as positive outward from the 
center of rotation. 

 Therefore, the fluid motion is stable if 2M increases with the radius from the axis 
of rotation.  
  

 This leads to the Rayleigh (1916) criteria for inertial stability, neutrality, and 
instability for a homogeneous, incompressible and inviscid circular vortex motion 
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




<
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∂
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   unstable inertially         0
neutal inertially         0
stable inertially         0

  
2

r
M  (7.5.9) 

 The inertial instability is also called centrifugal instability. 
 It can be shown that a Rankine vortex, where arV =  for crr ≤ and rbV /=  for 

crr > , and a and b are constants, is inertially stable for crr ≤ and neutral for 

crr > .   
 

δr

Ω
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 Note that a Rankine vortex is often used to represent the circulation of a tornado 
vortex core or a tropical cyclone in numerical modeling simulations, as in the so-
called bogusing technique.   
 

 The criterion for inertial instability for gu  can be derived by 
considering 
 

),()( MMfvvf
Dt
Du

g −=−=   (7.5.1) 
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. (7.5.2) 

   
where fxvM +=  is the absolute momentum and fxvM g += is the 
geostrophic absolute momentum of the basic state of the fluid.  
 
Now consider a parcel whose initial location is at oxx =  and 
moves with the basic flow.  If the air parcel is displaced a small 
distance ( xδ ) to xxx o δ+= , the new meridional velocity can be 
obtained by integrating (7.5.2), 
 
 xfxvxxv ogo δδ  )()( −=+ . (7.5.3) 

 

The geostrophic wind at the new location can be approximated by 
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 Substituting (7.5.3) and (7.5.4) into (7.5.1) at xxo δ+ leads to, 
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Thus, the criteria for inertial stability, neutrality, and instability 
are: 
 

 
0       inertially stable

    0       inertially neutral
0       inertially unstable

gvMf f f
x x

>
∂ ∂ = + = ∂ ∂  <

 (7.5.6) 

 
 Similarly for an air parcel that is moving with the geostrophic 

basic state motion at a position y = yo,  
 
  yfyuyyu ogo δδ +=+ )()( , 
 
 it can be derived  
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where )/( yuffM g ∂∂−−≡ is the absolute momentum. The criteria for 
inertial stability, neutrality, and instability are: 
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stable inertially       0
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 Based on (7.5.7), the inertial instability can be illustrated by 

 

  

 

 
  
    
       (Markowski and Richardson, 2010; curtesy of Dr. Markowski) 
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7.6 Symmetric Instability 

  

 
 
 
Fig. 7.11:  A schematic of a mean state with symmetric instability.  (a) A meridional, 
steady baroclinic flow.  The unidirectional geostrophic wind gv is in thermal wind 
balance.  One may imagine an idealized broad front is aligned with y-axis and located in 
between the cold and warm region.  Under this situation, gv is the along-front wind. (b) 

The M  and θ surfaces on the x-z plane are tilted such that both of them increase upward 
and eastward.  Displacement of an air parcel upward anywhere within the shaded area 
from point A is symmetrically unstable (Adapted after Houze 1993). 

 

 As discussed in previous sections, if a dry or unsaturated 
atmosphere satisfies the criteria for static (gravitational) stability (

02 >N ) and inertial stability ( 0)/( / >+∂∂=∂∂ fxvfxMf g ; fxvM g +=  is 
the angular momentum) separately, then an air parcel displaced 
either vertically or horizontally in the atmosphere will return to its 
original position.   
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 However, under certain conditions, it is possible for an air parcel to 
accelerate away from its original position if it is displaced along a 
slantwise path.   
 

 This type of instability is called symmetric instability, and is called 
so because the basic state and perturbations are independent of the 
horizontal coordinates.  Due to this reason, both 0/ =∂∂ x and 

0/ =∂∂ y have been used to refer to this state in the literature.  In the 
previous section, we assumed 0/ =∂∂ y and thus defined fxvM += .   
 

 On the other hand, if we assume 0/ =∂∂ x , then the absolute 
momentum may be defined as fyuM −= and the inertial instability 
criterion becomes 0)/( / <∂∂−=∂∂− yuffyMf g .  Symmetric 
instability has also been referred to as isentropic inertial instability 
in the literature.  
 

 In a dynamic sense, static, potential, inertial, and symmetric 
instabilities are very closely related.  Each of the instabilities can 
be thought of as resulting from an unstable distribution of body 
forces acting on a fluid element.   
 
The responsible body forces are the gravitational force for static 
and potential instabilities, centrifugal force for inertial instability, 
and a combination of gravitational forces in the vertical and 
centrifugal forces in the horizontal for symmetric instability.   
 
Due to the combination of these two forces, symmetric instability 
occurs when the motion is slantwise.   

 

7.6.1 Dry Symmetric Instability 

 The symmetric instability in a dry atmosphere can be understood 
by applying the parcel argument.  For convenience, consider a 
Boussinesq fluid in which the basic flow and disturbances are 
independent of the y direction, i.e. 0/ =∂∂ y , as was assumed earlier 
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in the derivation of criterion for inertial instability.  The air parcel 
can now be viewed as a tube of air extending infinitely along the y-
axis.   
 

 To demonstrate that symmetric instability may occur when the 
basic flow is both statically and inertially stable, we consider the 
mean state of the atmosphere as illustrated in Fig. 7.11.   
 

 
 

 The basic flow is also assumed to be in hydrostatic and geostrophic 
balance, i.e. in thermal wind balance,  
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, (7.6.1) 

 
where )(xθ and oθ are the mean potential temperature and a constant 
reference potential temperature, respectively.   
 

 Imagine that an idealized front is aligned with the y-axis and 
located between the cold and warm regions as sketched in Fig. 
7.11a.   
 
Under this situation, gv becomes the along-front wind.  The M and 
θ surfaces on the x-z plane are tilted such that both θ and M
increase upward and eastward (Fig. 7.11b).   
 
Since 0/ >∂∂ zθ , an air parcel displaced upward (downward) from 
A will have a lower (higher) value of θ than its environment, 
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assuming no perturbation of the environment by the parcel and 
immediate adjustment of the parcel’s pressure to that of its 
environment.  Thus, the parcel density is greater (smaller) than the 
environment for upward (downward) motion and results in 
negative buoyancy, which forces the parcel to accelerate back to its 
origin.   
 
Analogously, since 0/ >∂∂ xM , an air parcel displaced horizontally 
in the negative direction from point A in Fig. 7.11 acquires a 
positive value of ( MM − ) and is accelerated back toward A, 
according to Eq. (7.5.10).  
  

 Displacement of an air parcel along a M surface, as shown in Fig. 
7.11, will not cause the parcel to experience any horizontal 
acceleration since its M  value is conserved in the displacement.   

 
Similarly, a parcel displaced along the θ surface will not 
experience any vertical acceleration.   
 
However, displacement of an air parcel upward anywhere within 
the shaded wedge, will subject the parcel to an upward and 
leftward acceleration in the direction of its initial displacement 
since θ decreases and M increases along the displacement AB.  
This is called symmetric instability or more specifically dry 
symmetric instability.   
 

 Dry symmetric instability can also be viewed as either dry static 
(gravitational) instability on a M surface, i.e. 0/ <∂∂

gM
zθ , or inertial 

instability on an isentropic surface, i.e. 0/ <∂∂
θ

xM .  Thus, any 
slantwise displacement within the wedge expanded between M and 
θ may release the symmetric instability. 
 

 The occurrence of symmetric instability requires  
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 Based on coordinate transformation (e.g. Holton 2004), we have 
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 Substituting (7.6.3) into (7.6.2) leads to  

 1
)/)(/(
)/)(/(

>
∂∂∂∂
∂∂∂∂
xMz
zMx

θ
θ . (7.6.4) 

 The necessary condition for the dry symmetric instability 
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where 22 )//( zvNR gi ∂∂= is the Richardson number and gaζ  is the 
geostrophic absolute vorticity.    

 

 We find that symmetric instability is favored by low static stability, 
strong basic state wind shear, and anticyclonic relative vorticity. If 
there no horizontal wind shear exists, the above criterion is reduced to 

1<iR .   
 
  



                          39 

Table 7.1: Conditions for different types of instabilities (Lin 2007) 
 

 Static (Gravitational) Inertial Symmetric 

Dry Absolute Instability Inertial Instability Symmetric Instability 

 0/ <∂∂ zθ ; 

dγ > Γ  

0/ <∂∂ xM ; 

0<+ fgaζ  

( ) 0/ <∂∂ Mzθ ; ( ) 0/ <∂∂ θxM  

d M M
γΓ <  

θ
xzxz

M
∂∂<∂∂ //  

0<gPV  

Moist Moist Absolute Instability N/A N/A 

 s sγΓ <    

Conditional# Conditional Instability (CI) N/A Conditional Symmetric 
Instability (CSI) 

 0/* <∂∂ zeθ  

s dγΓ < < Γ  

(parcel lifted above LFC) 

 0/* <∂∂
Me zθ ; 0/ * <∂∂

e
zM

θ
 

s dM M M
γΓ < < Γ  

 *//
e

xzxz
M θ

∂∂<∂∂  

0* <gMPV  

(parcel lifted above LFC) 

Potential## Potential Instability (PI) N/A Potential Symmetric Instability 
(PSI) 

 0/ <∂∂ zeθ   0/ <∂∂
Me zθ ; 0/ <∂∂

e
zM

θ
 

e
xzxz

M θ
∂∂<∂∂ //  

0<gMPV  

#at saturation, *
ee θθ = ; ## wθ can be used equivalently for eθ .  Meanings of the symbols: 

(1) γ : observed environmental lapse rate; (2) dΓ : dry lapse rate; (3) sΓ : moist lapse rate; 
(4) sγ : observed environmental saturated lapse rate; (5) θ : environmental potential 
temperature; (6) eθ : environmental equivalent potential temperature; (7) *

eθ : 
environmental saturation equivalent potential temperature; (8) M : environmental 
geostrophic absolute momentum; (9) gPV : geostrophic potential vorticity (PV); (10) 

gMPV : geostrophic PV; and (11) *
gMPV : saturated geostrophic potential vorticity.  
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7.7 Baroclinic Instability (Brief Introduction) 
 
Take Eady’s approach (see e.g., Holton 2004), assuming 
 

  
 
The QG potential vorticity equation and thermodynamic energy equation are 
 

 
Applying the normal-mode solution, it can be derived 
 
 

 
 
The above leads to 
 

  
and the baroclinic instability occurs when α < αc where is defined by  
 
 )2/coth(2/ HH cc αα =       
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7.8 Barotropic Instability (Brief Introduction) 
 
With horizontal shear and b effect included, the linearized form of the 
quasi-geostrophic vorticity equation (e.g., Holton’s (6.18)) can be 
derived 
 
 ( ) 0''2 =
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∂
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+
∂
∂

x
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x
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t yy
ψβψ  (7.8.1) 

 
where yu ∂−∂= /'' ψ , xv ∂∂= /'' ψ , and '' 2ψζ ∇= . 
 
The term inside the bracket of the second term of (7.8.1) can be 
rewritten as  
  
 ( ) ( )oyyy f

dy
dUf

dy
dU ζβ +=−=− . (7.8.2) 

 
Substituting (7.8.2) into (7.8.1) and assuming a normal-mode solution: 

))(exp()(' ctxikyA −=ψ  leads to 
 
 0

)(
2

2

2

=







−

−
−

+ Ak
cyU

U
dy

Ad yyβ
. (7.8.3) 

 
After some manipulation, it can be shown the necessary condition for 
barotropic instability is 
 
 yyU−β must change sign at certain latitude (y=yc). 
 
 
 
 
 


	(Based on Ch. 7, “Mesoscale Dynamics”, by Y.-L. Lin 2007)
	Chapter 7 Mesoscale Instabilities
	 Observational, theoretical and numerical studies have found that instabilities play important roles in numerous mesoscale phenomena, such as
	Squall lines, rain bands, mesoscale convective complexes (MCC), mesoscale convective systems, mesoscale fronts, mesoscale cyclogenesis, clear air turbulence (CAT), billow clouds, heavy orographic precipitating systems, etc.
	 Thus, a fundamental understanding of the instabilities occurring at mesoscale and those that influence mesoscale circulations is essential to comprehend these phenomena.
	 For example, the momentum and/or potential energy associated with the airflow might be transferred into perturbation kinetic energy through instabilities, which may then disturb the flow or help release latent heating, dramatically disturbing the ai...
	 As discussed in Chapter 1 (Lin 2007), mesoscale instabilities may serve as one type of energy generation mechanism for mesoscale circulations and weather systems.
	 Although instabilities associated with the mean wind velocity or thermal structure of the atmosphere are a rich energy source of atmospheric disturbances, the maximum growth rates of most atmospheric instabilities are either on the large scale, such...
	 Symmetric instability appears to cover the mesoscale range in the sense that the projected horizontal scale of the slantwise circulation of the unstable mode is often in the mesoscale range.
	 Differences between moist and dry convection.
	o In a dry atmosphere, convection includes both unstable updrafts and downdrafts and turbulent eddies, such as the boundary convection in the afternoon and Rayleigh-Bénard convection (Chandrasekar 1961) triggered by the thermal instability between two...
	o Normally, moist convection in the atmosphere behaves quite differently from dry convection has and the mesoscale cellular convection shown in Fig. 7.1, and is characterized by (Emanuel and Raymond 1984):
	(1) Strong, compact, turbulent, unstable, upward motion,
	(2) Weak, compensated, laminar, stable downward motion (over a wide area of the surroundings), and
	(3) Gravity or inertia-gravity waves generated outside and which propagate away from the convective region.
	o However, the differences described above may be due to the spatial distribution of the forcing.
	o For example, Figure 7.1 show an example of a mesoscale cellular convection occurred over the Atlantic Ocean observed over the Atlantic Ocean off the southeast coast of the United States on February 19, 2002, as viewed by satellite Terra.
	 The open cells have downward motion and clear skies at the center of the cells. Notice the hexagonal open cells produced in the cloud-topped boundary layer and the convective clouds at the vertices of the hexagonal cells.
	 This type of clouds is an atmospheric manifestation of Rayleigh-Bénard convection in the atmosphere.  It normally forms as the cold air passes over the warmer ocean waters.  Notice the hexagonal open cells produced in the cloud-topped boundary layer...
	A sketch of 2D Rayleigh–Bénard convection in 2D     Rayleigh–Bénard convection in 3D
	(http://en.wikipedia.org/wiki/Rayleigh%E2%80%93B%C3%A9nard_convection)
	Animation of 2D Rayleigh-Benard convection:1
	Animation of 2D Rayleigh-Benard convection: 2
	Benard cell convection on a dishpan
	7.1 Wave Energy Transfer through Instabilities
	7.2.1 Governing equations
	 Considering a 2D flow and taking the normal mode approach by assuming
	. (7.2.10)
	Substituting it into (7.2.1) - (7.2.5) yields
	Defining a new variable h as
	, (7.2.13)
	Case (i): No forcing
	Eq. (7.2.16) is reduced to
	. (7.2.17)
	. (7.2.24)
	Since the flow is unstable, it requires that .  [Remember we assume that in (7.2.10).]
	The above equation therefore implies that at some level between  and, where is the Richardson number.
	Thus, for instability to occur, it is necessary that somewhere in the fluid.  On the other hand, if everywhere in the fluid system, then the fluid system is stable.  This is referred to as Miles’ Theorem.
	7.2.3 Howard's Semicircle Theorem
	Using the vertical displacement  and substituting its relationship with w,
	(7.2.27)
	into Eq. (7.2.25) yields
	. (7.2.28)
	Substituting  into the above equation and then separating the real and imaginary parts yields
	Equations (7.2.30) and (7.2.33) imply that
	. (7.2.34)
	Now supposing, we then have
	. (7.2.35)

