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6.1 Introduction 

 

 Planetary boundary layer (PBL) has 2 effects: (1) friction and 

(2) heat flux. 

 

 There are several sublayers of the PBL, namely surface layer, 

mixed layer, transition layer, and free atmosphere. 
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6.2 Reynolds Averaging and Closure Problem 

 

Following the scheme originally developed by Reynolds (1895), 

each variable of the governing equations is decomposed into a 

slow-varying mean field and a rapid-varying turbulent part, 
   

 

'u u u  , 'v v v  , 'w w w  , '    ,  

 

'p p p  , and '    . 

 

 

The fully compressible fluid system may be written as (e.g., Lin 

2007)  
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where  

vT  is called virtual temperature  

  is the virtual potential temperature  

op is the basic state pressure at the ground, usually taken as 1000  

 hPa 

S is any source or sink of  , such as surface long-wave  

 radiation and elevated latent heating  

S  is any source or sink of the hydrometeor  , such as mixing  

 ratios of water vapor ( vq ), cloud water ( cq ) , rain ( rq ), cloud  

 ice ( iq ), snow ( sq ), and graupel/hail ( gq ).   

 

The virtual (potential) temperature is the (potential) temperature 

that a dry air parcel would have if its pressure and density were 

equal to those of a given sample of moist air.  The virtual 

temperature is a fictitious temperature of a moist air parcel that 

satisfies the equation of state for dry air.  More realistic and 

sophisticated parameterizations of planetary boundary layer 

processes can be adopted.   
 

Substituting u, v, w, , p and  into the system of (13.5.6) – 

(13.5.14) leads to 
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where sp  is 1000 hPa, and  
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In the derivation, we have applied the Reynolds averaging, 
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In the above equations, the terms with  are due to molecular 

viscosity.  

 

Note that molecular viscosity is caused by the molecular motion 

which is important only in a very thin layer, i.e. the viscous 

sublayer.  The viscous sublayer has a depth of O(cm).  Above the 

viscous sublayer, the viscosity comes from the turbulent eddy 

motion, i.e. the eddy viscosity. 
 

 

 Note that the equation set (14.1.3)-(14.1.11) is not a closed 

system mathematically since in addition to the unknown mean 

variables, other flux terms are also present.   

 

 In order to make the equation set closed, we need to represent or 

parameterize the turbulent flux terms and the source and sink 

terms using the mean variables.   

 

The need for parameterizations poses a closure problem, which 

is a challenging task in parameterizing the PBL processes, as 

well as for moist and radiative transfer processes.   

 

The horizontal derivatives of the turbulent flux terms are 

normally associated with some horizontal inhomogeneities, such 

as cities and coastlines, which may be neglected over 

horizontally homogeneous regions. 
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 Direct Numerical Simulation (DNS) 

 
Direct numerical simulation (DNS) has been developed to numerically simulate 

turbulent motions by fluid dynamicists, in which the time-dependent Navier-Stokes 

equations with explicit terms for molecular diffusion are integrated numerically to 

obtain the solution, without making any turbulence parameterizations.  The finest 

scales of the simulation are determined by the balance between nonlinear advection 

and viscous diffusion, i.e. the Reynolds number (Re = UL/, where U and L are the 

characteristic velocity and length scales, respectively, and  the kinematic viscosity 

coefficient) of the flow.   

 

A typical value of kinematic viscosity for the air in the lower atmosphere is 
5 2 11.5x10 m s  . When Re>>1, changes in motion by advection are much more 

important than the dissipation due to molecular viscosity.  In this type of turbulent 

flow, a turbulent Reynolds number is more appropriately used to describe the 

characteristic of the flow, in which the kinematic viscosity coefficient is replaced by 

the turbulent exchange coefficient.  Boundary layers encountered in engineering 

practice have a fairly large Reynolds numbers ranging from 63 10  to10 , while the 

atmospheric boundary layers developing over most natural surfaces are characterized 

by even larger Reynolds numbers ( 96 10  to10 ).  The higher Reynolds number flows 

have also been observed in the free atmosphere, such as within cumulus cloud and in 

wave breaking regions.   
 
DNS requires the whole range of spatial and temporal scales of the turbulence to be 

resolved by the grid interval ( x ), from the smallest dissipative scale ( L ), where L  

is approximately equal to 3 1/ 4( / )   and   is the kinetic energy dissipation.  To 

satisfy these conditions, the number of grid intervals N in the grid direction must 

satisfy N x L   and x L  , where L is the integral scale. Since 3 /U L  , a three-

dimensional DNS will require a number of grid intervals 3 9/ 4N Re . Thus, the 

computational cost for DNS is extremely high.  With current computing power, it is 

unrealistic to apply DNS to mesoscale atmospheric modeling. On the other hand, 

even when the needed computing power is available; we still have to be careful in 

using the detailed information about small-scale turbulent motions and processes with 

sizes that cannot be resolved by available observational systems. Since these 

processes are not well understood at the present time, the governing equations of fluid 

motion cannot describe them accurately.   
 

 

 Reynolds-averaged Navier-Stokes numerical simulation 

(RANS) 
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The second approach is to numerically integrate the Reynolds-averaged Navier-

Stokes (RANS) equations of the mean motion. The ensemble properties of all time 

fluctuations in a turbulent flow are described by a turbulence closure.  In this 

approach, the subgrid-scale motions and processes are parameterized. The 

parameterization approach gives a less detailed representation than the explicit 

representation (DNS), but it is more practical in terms of computing cost and may be 

sufficiently accurate for many mesoscale models since it considers grid interval and 

initial data, among other factors.   

 

 Large-Eddy Simulation (LES) 
 

A third approach in numerically simulating turbulent flows is to simulate large 

turbulent eddies explicitly, while the unresolved subgrid scale motions associated 

with smaller turbulent eddies are either ignored or parameterized. In this type of 

large-eddy simulations (LES), the large turbulent eddies explicitly simulated by the 

numerical model fall in the range of the grid size to the domain size of the model.  

Although the LES of turbulent flows and neutral and unstable planetary boundary 

layer (PBL) flows have been demonstrated to be very encouraging, the simulations of 

the nocturnal boundary layer are less successful due to the fact that the characteristic 

large-eddy scale becomes too small, and that most of the energy transfer and other 

exchange processes are overly influenced or dominated by subgrid scale motions. 

Although the LES derive their credibility from the explicit resolution of large-scale 

turbulent eddies, they depend upon a small-scale turbulence closure and must, to 

some degree, inherit the many uncertainties associated with turbulence closure 

(Mason 1994).  Most LES results obtained so far are very encouraging, however, 

there is still room for improvements to overcome certain limiations. Some 

improvements include (a) the quality of the simulation can depend sensitively on 

subgrid modeling, which is not fully developed; and (b) LES requires high numerical 

accuracy, and does not in particular tolerate numerical dissipation which is often 

adopted in mesoscale models. To take advantage of both the LES and RANS, a 

hybrid LES-RANS approach has been developed and applied, in particular, to 

engineering problems.   

 

 

6.3 PBL Parameterizations  
 

a. Bulk aerodynamic parameterization 
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The bulk aerodynamic parameterization treats the boundary layer 

as a single slab and assumes the wind speed and potential 

temperature are independent of height, and the turbulence is 

horizontally homogeneous.   

 

Based on these assumptions, the horizontal turbulence flux 

divergence terms in (14.1.3)-(14.1.7) can be neglected, and the 

vertical subgrid turbulence fluxes are parameterized by 

 

 
2

' ' cosdu w C V   ; sin ''
2

VCwv d ;  ' '
ozhw C V     , (14.2.15) 

 

where dC  and hC  are nondimensional drag and heat transfer 

coefficients, respectively, 2 2 1/ 2( )V u v  , 1tan ( / )v u  , and oz  is the 

roughness or top of the surface layer.  The values of V , u , v , and 

 are evaluated at the standard anemometer height, 10 m. The bulk 

aerodynamic parameterization has been adopted in some GCM and 

regional climate models.   

 

For a given reference height, dC  increases with increasing 

roughness, which ranges from 1.3x10
-3

 over ocean surface to 7x10
-

3
 over rough land surface. From the formulas proposed in the 

parameterization of the surface layer, the expressions of dC  and hC  

may be derived 

 

  
22 / ln( / ) ( / )d o mC k z z z L  ;  

   2 / ln( / ) ( / ) ln( / ) ( / )h o m o hC k z z z L z z z L     , (14.2.16) 
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where m  and h are defined in (14.2.8) and (14.2.12), respectively, 

and  is an empirical value defined in (14.2.9). As mentioned 

earlier, an empirical value 1.35 has been proposed for  .   

 

Due to the assumption of height-independent wind speed and 

potential temperature and horizontally homogeneous turbulence, 

the bulk aerodynamic parameterization is more suitable for 

representing a well-mixed boundary layer than the neutral and 

stable boundary layers.  Based on these assumptions, further 

assuming a three-way balance among the Coriolis force, pressure 

gradient force, and the vertical gradient of the turbulent momentum 

flux from (14.1.3) and (14.1.4), and using the bulk 

parameterization, one may derive the following equations for u and 

v , 

 

 g su u Vv  ;  sv Vu , (14.2.17) 

 

where )/( fhCds  , h is the mixed layer height, and gu is the 

geostrophic wind speed at the bottom of the mixed layer.  Equation 

(14.2.17) can also be rewritten as 

 

 
1

x ;     ( ,  v)d

o

C
f p V u

h
    k V V V , (14.2.18) 

 

which gives a three-way balance with the wind deflected toward 

the low pressure.  In addition, the cross-isobar flow increases as 

the turbulent drag increases.  Note that in a rotational frame of 

reference or in the presence of directional shear, the frictional force 

on a fluid element need not be parallel and opposite to the velocity 

vector (e.g., Fig. 6.4 of Arya 2001), as commonly depicted in 
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many textbook schematics of the force balance in the frictional 

layer (e.g., Holton 2004).   

 

 

b. K-theory parameterization 

 

Although the bulk parameterization is simple and easy to 

implement in a numerical model, it cannot properly represent a 

neutrally and stably stratified boundary layer.  The reason for this 

is that the wind speed and direction in this situation does vary 

significantly with height and the boundary layer above the surface 

cannot be treated as a single slab.  In order to close the 

mathematical problem, the subgrid turbulent flux terms are 

assumed to be proportional to their corresponding local gradients 

of the mean values, analogous to molecular diffusion.   

 

In this approach, the turbulent flux terms in (14.1.3)-(14.1.7) are 

written as (14.2.1).   

  

 
z

q
Kqw

z
Kw

z

v
Kwv

z

u
Kwu qhmm



















 ''    ;''     ; ''     ;''


 , (14.2.1) 

 

Similar to the bulk parameterization, the subgrid turbulent flux 

divergence terms are neglected.  The simplest way to determine the 

exchange coefficients in the boundary layer is based on the mixing 

length hypothesis. Analogous to the mean free path of molecules, 

the mixing length hypothesis assumes that an air parcel that is 

displaced vertically will carry the mean properties of its original 

level for a characteristic length, i.e. the mixing length ( l ), before 



11 

 

mixing with its environment. Since zulu  /'  and mK  are 

proportional to 'lu , based on dimensional argument, we then have 

 

 zulKm  / 2
. (14.2.19) 

 

The eddy and thermal diffusivity coefficients, mK and hK , 

respectively, are often taken as either constants or empirically 

related to height and stability as calculated from NWP model 

output.  As mentioned in the parameterization of the surface layer 

discussion, this approach of the parameterization of momentum, 

heat, and moisture fluxes is referred to as K theory.  

 

The K theory is a first-order closure because the fluxes are 

parameterized proportional to the mean values.  If the exchange 

coefficients are taken as constants, then they are referred to as 

local exchange coefficients. For example, the local exchange 

coefficient may be expressed as (Blackadar 1979) 

  

 Stably stratified ( 0/  z ): 

 CChm RizVlRiRiKK /)/()(1.1 2  , CRiRi   (14.2.20a) 

    0 ,       CRiRi  , 

  

 Unstably stratified ( 0/  z ): 

   2/12 )211)(/( RizVlKm  ; 2/12 )871)(/( RizVlKh  , (14.2.20b) 

where 0.25CRi   is the critical Richardson number.  Note that CRi

distinguishes whether the flow is dynamically (shear) stable or not. 

A value of kzl   for z < 200 m (with 35.0k ) and 700 m for 

200 mz  in (14.2.20a) has been suggested (McNider and Pielke 

1981). 
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The local K-theory approach has been adopted in a number of 

mesoscale models as an option.  In addition to Blackadar’s 

formulation, other formulations of local exchange coefficients have 

also been proposed.  However, approaches such as the local K-

theory scheme have been found to have some deficiencies. The 

most serious problem in this formulation is that the transport of 

mass and momentum in the PBL is mostly accomplished by the 

largest eddies and such eddies should be parameterized by the bulk 

properties of the PBL instead of the local properties (e.g., 

Wyngaard and Brost 1984; Holtslag and Moeng 1991).  The 

discrepancy in eddy size makes the local K-theory problematic for 

unstable conditions, and its implementation could induce the 

appearance of countergradient fluxes.   

In order to resolve this problem, non-local K-theory has been 

proposed (e.g., Deardorff 1972; Troen and Mahrt 1986; Holtslag 

and Moeng 1991). For example, the turbulence diffusion equations 

for prognostic variables can be expressed by  
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where orc m hK K K  and C is a correction to the local gradient that 

incorporates the contribution of the large-scale eddies to the total 

flux.  The eddy diffusivity coefficient can be formulated as 
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where p is the profile shape exponent taken to be 2, k is the von 

Karman constant (= 0.4), z is the height from the surface, h is the 

height of PBL, and sw is a mixed-layer velocity scale (e.g., Troen 

and Mahrt 1986; Hong and Pan 1996).    

 

Assuming a three-way balance among the Coriolis force, pressure 

gradient force, and the vertical gradient of the turbulent momentum 

flux from (14.1.3) and (14.1.4), in addition to the use of the K-

theory parameterization with constant mK , one may derive the 

following Ekman layer relationships 
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The derivation of the above equations is similar to that of 

(14.2.17), except that the K-theory parameterization is adopted 

instead of the bulk parameterization.  Introducing a new complex 

variable, ivu  , (14.2.23), and (14.2.24) can be combined into a 

single equation, 
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The solution of (14.2.25) subjected to the no-slip boundary 

conditions at the ground, 0u v   at 0z , and approaching 

geostrophic wind speeds far from the ground, i.e. gu u and gv v

as z  is 

 

 (1 cos )z

gu u e z   ; sinz

gv u e z  , (14.2.26) 



14 

 

 

where 2/1)2/( mKf .  The above solution is sketched in Fig. 14.4.  

The wind veers (i.e. turns clockwise) and increases with height to 

be slightly over the geostrophic value, and then reaches to be 

nearly the geostrophic value at  /z , which may also be defined 

as the Ekman layer depth.  The spiral wind profile is known as 

Ekman spiral.   

 

 

 

 

Fig. 14.4: A sketch of the wind vectors of the Ekman spiral (14.2.26).  The arrows show 

the wind vectors at non-dimensional height 3/2 ,2/ ,3/ ,6/  z , where  is defined 

in (14.2.26). (Adapted after Batchelor 1967) 

 

 

 

c. Turbulent kinetic energy closure scheme 

The first-order closure schemes, such as K-theory 

parameterization, may be improved by predicting one of the 

subgrid-scale variables, the turbulent kinetic energy (TKE) per unit 

mass 
2 2 2( ' ' ' ) / 2e u v w   

 
, while the other subgrid scale turbulent 

flux terms are diagnosed and related to both the TKE and the grid-

scale mean values.  
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The prognostic prediction of TKE in the parameterization scheme 

is referred to as the TKE or one-and-a-half-order closure. 

  
When the Reynolds number of a laminar flow increases, it may break down into a 

turbulent flow.  A turbulent flow is characterized by high randomness, nonlinearity, 

diffusivity, vorticity, and dissipation.  The breakdown is often associated with 

instability, such as shear instability or buoyant (static) instability.  Shear and 

buoyancy are the two major sources of the production of TKE, which may be denoted 

as S and B, respectively.  Once the turbulence is generated and fully developed into a 

steady state in terms of averaged flow properties, then the instability is no longer 

required to sustain the turbulent flow.  In order to reach steady state turbulence 

(statistically), certain mechanisms are required to remove and redistribute TKE.  

These mechanisms are often attributed to the dissipation (D) due to turbulent eddy 

viscosity and molecular viscosity, and the transport and redistribution (Tr ) due to 

advection and pressure forces.  Thus, the time evolution of TKE can be written as 

 

 /De Dt S B Tr D    . (14.2.27) 

 

To derive the mathematical form of the TKE equation, we first substitute 'u u u  , 
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Unlike in Section 14.1, in deriving the above equation, we have used the partition of 

p and   into hydrostatic ( op and o   large scale) and nonhydrostatic ( 1p and 1   

mesoscale) parts, neglected 1  and ' relative to o except in the buoyancy 

(associated with the gravity) term, and assumed an anelastic fluid. Now, multiplying 

(14.2.28)-(14.2.30) by ' ,' ,' wvu , respectively, and then taking the Reynolds averaging 

over a grid volume lead to the TKE equation, 
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  (14.2.31) 

The left-hand side of (14.2.31) represents the local rate of change of the TKE.   

 

Term 1: advection of e  by the grid-volume averaged velocity   

Term 2: grid-volume average of the advection of TKE by the subgrid-scale  

              perturbation velocity.   

Term 3: change in TKE by advection through the boundaries of the grid volume 

              (Term 3 is difficult to measure and is thus often ignored in the closure  

               problem.)   

Term 4: buoyancy production of the TKE 

Term 5: shear production of the TKE 

Term 6: diffusion of turbulence by molecular diffusion 

Term 7: sink of TKE by molecular diffusion.   

(In mesoscale modeling, Terms 6 and 7 are often ignored.) 

 

d. Higher-order closure schemes 

In fact, subgrid-scale perturbations such as ', ', ', and 'u v w  , can be 

predicted by subtracting the resolved flow equations from the full 

equations, similar to the derivation of TKE equation.  The 

proposed method will generate new unknown variables involving 

triple correlation of the perturbations, which must be represented 

by the mean variables and quadratic perturbation terms, in order to 

close the system mathematically.   
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One can go further by deriving the prediction equations for the 

third moments and close the system on higher-order correlation 

terms (Mellor and Yamada 1974), commonly referred to as the 

higher-order closures.   

 

The higher-order closure schemes are capable of representing a 

well-mixed layer structure.  Figure 14.5 shows a comparison of 

numerically simulated virtual potential temperature profiles in the 

boundary layer for Day 33 of the Wangara experiment by using a 

TKE closure scheme and a third-order closure scheme, and the 

observational data.  The TKE closure scheme (Fig. 14.5a) is 

capable of capturing the observed major features (Fig. 14.5c) 

compared to the third-order closure scheme (Fig. 14.5b).  The 

higher-order closure schemes are computationally expensive and 

do not necessarily make a significant improvement in accurately 

parameterizing the PBL compared to lower-order closure schemes, 

such as TKE.   

 

 
Fig. 14.5: Comparison of predictions of the virtual potential temperature profile using (a) 

TKE closure scheme (Adapted after Sun and Chang 1986) and (b) third-order closure 

scheme (Adapted after André et al. 1978) for Day 33 of the Wangara experiment against 

(c) observational data (Adapted after André et al. 1978).  The local times are denoted by 

the numbers adjacent to the curves. 

 


