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Department of Energy & Environmental Systems ylin@ncat.edu 

North Carolina A&T State University http://mesolab.org  

    

NWP Lecture 2 (Lin 2007 Ch. 2) 
 

Ch. 2 Lecture Note: Governing Equations of Stratified and Shallow-

Water Flow           
(Based on Ch. 2 & 3, “Mesoscale Dynamics” by Y.-L. Lin 2007) 

 

2.1 Introduction  

 The governing equations are based on:  

 (a) Newton’s second law,  

 (b) Conservation of mass, and  

 (c) Conservation of energy.   

 

 The above conservation laws are represented by the horizontal and 

vertical equations of motion, continuity equation, and the 

thermodynamic energy equation, respectively.  

 

2.2 Governing Equations of Mesoscale Stratified Fluid Flow 

 The momentum equations, continuity equation, and thermodynamic 

energy equation governing an atmospheric fluid flow can be expressed 

as, 
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where zwyvxutDtD  ///// is the total or material 

derivative, which represents the change of a certain property within a 

fluid parcel following the motion, rzryrx FFF  and , ,  are the viscous terms 

in x, y, and z directions, respectively.   
 

 Earth curvature terms need to be considered for large scale motions, 

which are often incorporated in NWP models.  See Holton (2012) for 

details. 

 

 The friction and heat fluxes (e.g., sensible heat and latent heat) 

associated with planetary boundary layer (PBL) processes are 

normally parameterized by the rF and F terms, respectively in a 

numerical model.  This proposes a challenging problem in NWP or 

mesoscale modeling. 

 

 The diabatic heating rate (q) represent the surface heating, elevated 

latent heating and radiative heating rate per unit mass.   Accurate 

parameterizations of these processes are essential for successful 

NWP. 

 

 Representations of the diabatic heating in NWP models: 
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 (a) The surface heating and friction is part of the PBL processes, thus 

is usually represented by PBL parameterization and land surface 

parameterization schemes. 

  

 (b) The latent heating is represented by cumulus parameterization 

schemes (subgrid) or microphysical parameterization (grid explicit) 

schemes. 

   

 (c) The radiative processes are represented by longwave and 

shortwave radiation (radiative transfer) parameterization schemes. 

 

 The equation set (2.2.1)-(2.2.3) is often referred to as the Navier-

Stokes equations of motion.                                   
 

 Some basic dynamics can be learned by studying the perturbation 

equations, which neglect the nonlinear (e.g., ' '/u u x  ) and viscosity 

terms, 
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 where N is the Brunt-Vaisala (buoyancy) frequency and H is the scale 

height, which are defined as 
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2.3 Approximations to the Governing Equations 

  

 Three forms of the continuity equation are often used in the literature. 

 

(a) Fully compressible continuity equation: (2.2.4)   

One of the advantage of this system is that the key dependent 

variables are all predicted (i.e. time dependent), instead of prognostic 

(time-independent), thus there is no need to make the diagnosis for 

certain time-independent unknown variables.  However, note that 

sound waves are included in the system, which requires a very small 

time step (interval) to keep the numerical integration stable and 

efficient, thus a special treatment of them is necessary.  

 

 One popular scheme used in NWP models is the time-splitting 

scheme in which a smaller time step is adopted for simulating the 

terms related to sound waves while a larger time step is adopted for 

simulating the other terms in the governing equations.   
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 Most of the popular mesoscale research models, such as WRF 

(NCAR), MM5 (PSU-NCAR), ARPS (OU), CSU-RAMS, and 

COAMPS (NRL) models. 
 

(b) Anelastic or deep convection continuity equation 
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 0)( /   HzeV' , or (2.3.2) 

 0)(  V' . (2.3.3) 

 

 where H is the scale height.  Since sound waves are filtered in this 

approximation, there is no need to adopt time-splitting scheme.   

 

(c) Incompressible or shallow convection continuity equation 

 

 0 V' . (2.3.4) 

 

 This approximation is valid when 1/ HLz .  It is important to 

mention that zL represents the depth of convection (dry or moist) or 

motion, while H represents the scale height, which is controlled by 

the basic structure of the atmosphere, instead of the motion.   
 

 A well-known approximation, which has been used widely in 

theoretical studies, is the Boussinesq approximation (Boussinesq 

1903), which is equivalent to that: (1) HLz /1/1  , (2) density is 

treated as a constant except where it is coupled to gravity in the 

buoyancy term of the vertical momentum equation, and (3) replace 

and  by o and o , respectively.   
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 For a disturbance with a much larger horizontal scale than vertical 

scale, the vertical acceleration generally becomes small and may be 

neglected.  This leads to the hydrostatic equation,    
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 Or the linear hydrostatic equation, 
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 In the pressure coordinates, the hydrostatic, Boussinesq equations 

can be written (Emanuel and Raymond 1984) 
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 where 

 ' ( ', ')u vV , ' gz  = perturbation geopotential, /Dp Dt  , po and o  

are constant reference pressure and density, respectively, and 

ogb  /'' is the perturbation buoyancy. 
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 Note that in some NWP models, a vertical pressure coordinate, 

instead of a height coordinate is adopted.  In order to incorporate the 

terrain into the model, p and z coordinates have been 

introduced.   
 

 Also, some NWP models adopt the Exner function to replace the 

pressure in their model equations.  The Exner function is defined as 

 

  

pd cR

o

p
p

p
c

/

 







 . 

  

 In some models or papers, the Exner function is defined as 
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 This may be called nondimensional Exner function.   

 

2.4 Shallow Water Wave Equations  
  (Ref.: Sec. 3.4 of Lin 2007) 

 

 Consider a  

(1) non-rotating (f = 0),  

(2) hydrostatic,  

(3) two-layer fluid system with constant densities 1  and o  in the 

upper and lower layers, respectively, (Fig. 3.2) and  

(4) 1 o  , the pressure gradients at the interface can be approximated 

by 
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 where 1  o  and hs is the height of the topography (see Fig. 

3.2).  The above equations can be understood by considering flow 

over a flat terrain or bottom topography, hs = 0, by considering the 

fluid is in hydrostatic balance.   

 

 In deriving the above equations, we have used h+hs=H+h’, where h 

is the depth of the fluid.   
 

 

 

 

 

 

 

 

 

 

Fig. 3.2: A two-layer system of homogeneous fluids.  Symbols H, h, hs, and h’ denote 

the undisturbed fluid depth, actual fluid depth, bottom topography, and perturbation 

(vertical displacement) from the undisturbed fluid depth, respectively.  The densities of 

the upper and lower layers are 1 and o , respectively.  The pressure perturbations at A 

and B from p in the upper layer are denoted by 1p p and 2p p , respectively. 

(From Lin 2007) 

 

 

 By assuming no initial vertical shear, the horizontal momentum 

equations become 
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 where ogg  /'  is the reduced gravity.    

 

 The continuity equation in a shallow water system can be derived, 
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 One may substitute 'uUu  , 'vVv  , and shhHh  ' to obtain 

the perturbation form, 
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 [Special Case - 2D (x, z), linear, one-layer system] The governing 

equations for two-dimensional, small-perturbation (linear), one-

layered fluid system with a flat bottom reduce to the following  
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The above two equations may be combined to 
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 We may obtain the analytical solution (or applying the characteristic 

equation method) directly from the governing equation, 
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 where f preserves the same shape of the initial disturbance but with 

the amplitude reduced to half.  For example, the shallow-water waves 

with the initial bell-shaped disturbance 
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 are represented by, 
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 The governing equation for a two-dimensional, small-perturbation 

shallow water fluid flow over an obstacle can be derived,  
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 which gives the following steady state solution     
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 where F is called the Froude number.   

 

 Thus, we have 

 

 shh '          for 1F ,  

 shh '          for 1F ,                                               (3.4.18) 

 

 Froude number is related to the ratio of kinetic energy and potential 

energy of the upstream basic flow.   

 

Note that in the real atmosphere, ocean, or other geofluid, there is 

density variation with height (i.e., stratification).  Thus, the Froude 

number is often defined as U/Nh in a stratified fluid flow, where N  

 
Fig. 3.3: Five flow regimes of 

the transient one-layer shallow 

water system, based on the 

two nondimensional control 

parameters (

HhMgHUF mco /  ,/  ):  

(a) supercritical flow, (b) flow 

with both upstream and downstream propagating jump, (c) flow with upstream 

propagating jump and downstream stationary jump, (d) completely blocked flow, and (e) 

subcritical flow.  (Lin 2007; Adapted after Baines 1995) 

 



 

 

 

 12 

is the Brunt-Vaisala frequency and h is the mountain height. Some 

scientists argued that the physical meaning of U/Nh is very different 

from the Froude number ( gHUF / ), thus prefer to use Nh/U and 

called it nondimensional mountain height.     

 

 Several flow regimes are controlled by the Froude number. 

  

 

 

 

 

 

 
  Durran (1990; in Blumen (Ed.), AMS) 

  

(a) Supercritical Flow (F > 1) 

If F > 1 far upstream, shh '
. 

Thus, h’ increases as hs(x) increases and the interface bows 

upwards over the obstacle (Fig. (3.3a)).  

Physically, this means that the upstream flow has enough 

kinetic energy to convert to potential energy and climb over the 

obstacle.  This flow regime is called supercritical flow. 

 

 

 

                                                         

   
                                                              Fig. 3.3 (Lin 2007) 

 

 

https://books.google.com/books/about/Atmospheric_Processes_Over_Complex_Terra.html?id=soJNAQAAIAAJ
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(e) Subcritical Flow (F < 1) 

If F < 1, then shh ' .  

Thus, h’ decreases as hs(x) increases.  

 

Physically, this means that a fluid particle does not have enough 

kinetic energy to climb over the obstacle. In order to surmount 

the obstacle, the fluid particle needs to draw its potential energy 

to gain enough kinetic energy (Fig. 3.3e).   

 

Over the peak of the obstacle, the fluid reaches its minimum 

speed.  This flow regime is called subcritical flow.  The square 

of F is the ratio of the advection flow speed (U) to the shallow 

water wave or long wave speed ( gH ).    

                  

Thus, when the flow is supercritical (F > 1), small disturbance 

cannot propagate upstream against the flow and any obstacle 

will produce a purely local disturbance.    

   

When the flow is subcritical (F<1), shallow water (long) waves 

are able to propagate upstream.  The steady state effect of this is 

to increase the layer depth upstream, which increases the 

potential energy of the flow.  The potential energy is then 

converted to kinetic energy when the fluid surmounts the 

obstacle.   Thus, the fluid reaches its maximum speed and the 

water surface dips down. 

 

Note that in this type of “steady state” flow, we have 
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The above equation describes the so-called Bernoulli or 

Venturi effect. 

 

 In a transient (unsteady) flow more flow regimes may occur.  

Dividing Eq. (3.4.17)  
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by H leads to another nondimensional control parameter, 

M=hm/H. M is also called nondimensional mountain height 

which measures the nonlinearity of the flow. 

 

Based on F and M, there exist 3 other flow regimes in a single-

layer transient shallow water system (Long 1970, 1972; Houghton and 

Kasahara 1968; also see Ch. 3 of Lin 2007 for a brief review), as discussed in 

the following. 

  

(b) Flow with both upstream and downstream propagating jumps 

(Fig. 3.3b)  

 

As either F decreases or the non-dimensional obstacle height M 

increases, the upstream flow is partially blocked and the flow 

response shifts to the regime in which both an upstream 

hydraulic jump (bore), such as the famous Chien-Tang River 

http://en.wikipedia.org/wiki/Venturi_effect
http://mesolab.ncat.edu/1.2_NWP%20%28EES853%29/index.html
http://freaquewaves.blogspot.com/2009/10/chien-tang-river-tidal-bore-ii.html
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Tidal Bore (video) and a downstream jump form and propagate 

away from the obstacle as time proceeds (Regime b, Fig. 3.3b). 

 

In this case, a transition from subcritical to supercritical states 

occurs over the peak of the obstacle.  Very high velocities are 

produced along the lee slope since the potential energy 

associated with the upstream flow is converted to kinetic energy 

when the fluid passes over and descends along the lee slope of 

the obstacle.  

 

Eventually, a steady state is established in the vicinity of the 

obstacle and the free surface shape acquires a "waterfall-like” 

profile.   

 

 

 

 

 

 

 

 

 

                    Fig. 3.3 (Lin 2007) 

 

(c)    Flow with upstream propagating jump and stationary   

     downstream jump (Fig. 3.3c)  

 

As F decreases further, the flow shifts to the regime in which 

another upstream jump forms and propagates upstream, while 

http://freaquewaves.blogspot.com/2009/10/chien-tang-river-tidal-bore-ii.html
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the downstream jump becomes stationary over the lee slope due 

to the weaker advection effect (Regime c, Fig. 4.3c). 

 

Regimes b and c are characterized by high surface drag and 

large flow velocities on the lee slope and is referred to as the 

transitional flow.  This transitional flow has been used to 

explain the formation of severe downslope wind in the 

atmosphere (e.g., Long, 1954; Smith, 1985; Durran, 1986; Bacmeister 

and Pierrehumbert, 1988; see Ch. 5 of Lin 2007 for a review).   

   

 (d)    Completely blocked flow (Fig. 3.3d). 

With a very small F and M > 1, the flow response falls into the 

regime of completely blocked flow (Regime d in Fig. 3.3).   

 

 Fig. 3.4a show a hydraulic jump formed near Boulder, Colorado, 

on 11 January 1972 and a sketch (Fig. 4.4b) of regime c which 

apparently may represent the situation for the 1972 Boulder 

windstorm.  A severe downslope wind over the Front Range to 

the east of the continental divide reached a value of over 60 ms-1.   

The mechanisms for producing severe downslope winds will be 

discussed in the chapter of orographically forced flow (Ch. 5).  

An example of an internal hydraulic jump occurred in the 

atmosphere is shown in Fig. 3.5.   
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Fig. 3.4: (a) Analysis of potential temperature from aircraft flight data and 

rawinsondes for the 11 January 1972 Boulder windstorm.  Aircraft tracks are shown 

by dashed lines with locations of significant turbulence shown by plus signs.  The 

heavy dashed line separates data taken by the Queen Air aircraft (before 2200 UTC) 

and from the Saberliner aircraft (after 0000 UTC) (Adapted after Klemp and Lilly 

1975).  The severe downslope wind reached a value greater than 60 ms-1.  (b) A 

sketch of flow Regime c of Fig. 4.3, which may be used to explain the phenomenon 

associated with (a).  Q represents the volume flux per unit width. (Lin 207; Adapted 

after Turner 1973) 

 

 

 

 

 

 

 
Fig. 4.5: A hydraulic jump in a supercritical airflow over the Sierra Nevada mountain 

range, made visible by the formation of clouds, and by dust raised from the ground in 

the turbulent flow behind the jump. (Lin 2007; Photographed by Robert Symons, 

published in Comm. Pure and Applied Math, 20, no. 2, (review by M. J. Lighthill, 

@John Wiley and Sons, Inc., 1967). 
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 If the nonlinear terms are considered, then wave steepening and 

wave overturning may occur.   

 

 The nonlinear effects on wave steepening may be elucidated by 

imaging an elevated wave, which is composed of several rectangular 

blocks with smaller blocks on top of larger blocks.  Since the shallow 

water wave speed is proportional to the layer depth, the speed of fluid 

particles in the upper layer is higher than that in the lower layer.  

Thus, the wave front will steepen and possibly overturn.  Once 

overturning occurs, the fluid becomes unstable and turbulence will be 

induced. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6: The evolution of an initial symmetric wave, which is imagined to be 

composed of three rectangular blocks with shorter blocks on top of longer blocks.  

The wave speeds of these fluid blocks are approximately equal to ( )nc g H nh  , 

based on shallow-water theory, where n = 1, 2, and 3, H is the shallow-water layer 

depth, and h is the height of an individual fluid block.  The wave steepening in (b) 

and wave overturning in (c) are interpreted by the different wave speeds of different 

fluid blocks because 3 2 1c c c  .  (Lin 2007 – Mesoscale Dynamics) 
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 Note that for stratified fluid, the Froude number is defined differently:  

 

 
 

 

 

 

 

 

 

 

      Fig. 5.1: The steady-state, inviscid flow over a two-dimensional sinusoidal mountain 

when (a) 2 2l k ( N kU , evanescent waves), where k is the terrain wavenumber (=

2 / a , where a is the terrain wavelength), or (b) 2 2l k  ( kUN  , vertically 

propagating waves).  The dashed line in (b) denotes the constant phase line which tilts 

upstream with height.  The maxima and minima of 'u , 'p  (H and L), and '  (W and 

C) are also denoted in the figures. 
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Fig. 6.10: Time evolution of the potential temperature fields (left two columns) and the 

horizontal velocity fields (right two columns) for a two-dimensional, hydrostatic, uniform flow 

over a bell-shaped mountain as simulated by a numerical model.  The first and third columns 

correspond to nondimensional time 6.12/ aUt , while the second and fourth columns 

correspond to 4.50/ aUt .  The Froude number ( NhUF / ) varies from 0.3 (bottom row) to 

1.3 (top row).  The dimensional computational domain from 128  to km 128  is plotted against 

dimensional height ( km ), which corresponds to a constant nondimensional physical domain 

height of z7.1 ( NhUz / is the vertical wavelength of hydrostatic waves). (Adapted from Lin 

and Wang, 1996) 
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 Model Intercomparison for the 1972 Boulder Windstorm during 

Mesoscale Alpine Program (MAP) (Doyle et al. 2000 Mon. Wea. 

Rev.) 
 

  

http://mesolab.ncat.edu/publications%20%28web%29/index.html
http://mesolab.ncat.edu/publications%20%28web%29/index.html
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 An intercomparison of 2006 T-REX mountain wave simulations 

(Doyle et al. 2011, Mon. Wea. Rev.) 
 

chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/http:/journals.ametsoc.org/doi/pdf/10.1175/2008BAMS2487.1
http://journals.ametsoc.org/doi/pdf/10.1175/MWR-D-10-05042.1

