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Mesoscale Dynamics 

By Yuh-Lang Lin 
[Lin, Y.-L., 2007: Mesoscale Dynamics. Cambridge University Press, 630pp.] 

Chapter 12 Basic numerical methods 

12.1 Introduction 

 In Chapter 2, we derived a set of nonlinear partial differential equations governing 

mesoscale atmospheric motions.  One way to study the dynamics associated with these 

equations is to make the small-amplitude approximation and solve the linearized 

equations analytically, as demonstrated in earlier chapters.  However, this approach limits 

us to study only mesoscale systems with small-amplitude perturbations.  In addition, the 

number of available analytical methods at hand to solve these complicated equations is 

limited.  As mentioned in earlier chapters, an alternative solution is to use numerical 

methods where the equations are discretized and solved numerically in space and time.  

The advantage of applying the numerical methods is that they are able to solve completely 

the nonlinear set of equations.  Numerical methods also provide a powerful framework 

for sensitivity tests or experiments with forcing or physical processes.  In these 

experiments, physical parameterizations or external forcing can be easily altered or 

completely deactivated. Examples of the parameterizations include those for planetary 

boundary layer processes, moist processes, and radiative processes, while external forcing 

can come from orography.  In this regard, numerical simulations are more flexible than 

physical experiments, such as the experiments conducted in a water tank, gas chamber or 

wind tunnel, and field experiments conducted in the real atmosphere.  

 When numerical methods are adopted to solve mathematically intractable governing 

equations, one needs to address the following important questions: (1) Does the solution 
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of the approximate equations converge to that of the original differential equations when 

the time and grid intervals approach zero? (2) Is the numerical solution well-behaved in 

time, or more precisely, is the numerical scheme stable? (3) If the numerical scheme is 

stable, how well do the amplitudes and phases of the approximated waves or disturbances 

represent those of the exact solution?  We will try to answer these questions in this 

chapter.  

 The major numerical methods that are used to solve partial differential equations can 

be categorized as (1) finite difference methods, (2) Galerkin methods, and (3) Lagrangian 

methods.   Combinations of these methods for solving a set of time-dependent equations 

have also been developed.  In the finite difference methods, dependent variables are 

defined at specific grid points in space and time, and the derivatives in the equations are 

approximated by Taylor series expansion or other approaches.  For mesoscale numerical 

weather prediction models, the governing equations are solved in a finite region of the 

atmosphere.  Thus, mesoscale models are often referred to as limited-area or regional 

models.  In order to integrate the governing equations numerically, boundary conditions 

of the variables at the boundary of the integration domain are required.  In addition, initial 

conditions are also required for integrating time-dependent partial differential equations 

so as to arrive at a future solution, which we call prediction.  Finite difference methods 

are the most popular numerical methods adopted for mesoscale numerical weather 

prediction models.    

 In Galerkin methods, dependent variables are represented by a sum of functions that 

have prescribed spatial structures.  The coefficient associated with each function is 

normally a function of time for a time dependent problem, which transforms a partial 
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differential equation into a set of ordinary differential equations (in time) for the 

coefficients.  These equations are usually solved using finite difference approximations in 

time. The Galerkin methods can be divided into two major categories: the spectral 

method and the finite element method. In the spectral method, dependent variables are 

represented by orthogonal, global basis functions, such as a sinusoidal function. The 

spectral method is less popular with mesoscale models due to the difficulties posed by 

nonperiodic lateral boundary conditions with limited area models.  The spectral method 

is, however, much more convenient with global models due to the periodic nature of their 

zonal boundary conditions.  Techniques for treating nonperiodic boundary conditions 

have been developed in the last two decades; thus the spectral method has also been used 

in mesoscale models.  Finite element method is similar to spectral method except that it 

uses local instead of global (in terms of the integration domain) basis functions.  The 

local basis functions include chapeau and tent functions.  There is a growing interest in 

adopting the finite element methods for mesoscale models due to their accuracy and 

flexibility in treating the irregular geometry of internal or external boundary.  One of the 

disadvantages of finite element methods is that they usually require significantly more 

computing time to invert a normally large matrix every time step.  Although finite 

element methods are more accurate compared to finite difference methods with the same 

order of accuracy, finite difference methods can achieve similar solution accuracy by 

using a higher-order scheme with less computing time.  In addition, the advantage of 

finite element methods in treating irregular lower boundaries is significantly diminished 

when finite difference numerical models employ the so-called terrain-following 
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coordinates, in which the irregular lower boundary becomes ‘flat’ or regular within the 

transformed computational domain.     

 In the Lagrangian methods, the equations governing the fluid motion are solved by 

following a fixed set of particles throughout the period of integration.  The advantage of a 

Lagrangian method is that it treats the total derivative at once, instead of treating the local 

rate of change and advection terms individually.  However, in general, a set of fluid 

particles, which are initially distributed regularly, will soon become greatly deformed, and 

are thus rendered unsuitable for numerical integration.  In order to avoid this problem, the 

semi-Lagrangian method is employed. Thus, the fluid variables at the predicted time step 

can be defined at the regular grid points and those at the previous time steps (which are 

often not located at the regular grid points) are interpolated from the known values at the 

regular grid points from the previous time step.  The semi-Lagrangian method has 

become popular in recent years, especially with large-scale models, since a relatively 

large time interval for integration can be used due to its unconditional stability 

characteristics.  

 Other methods, such as the upstream interpolation (e.g., Pielke 2002) and finite-

volume (e.g., Durran 1998) methods, have also been used in mesoscale numerical models.  

In an interpolation method, dependent variables at grid points are used to derive 

interpolation formulae that are then used to calculate spatial derivatives.  Unlike finite-

difference methods, finite-volume methods generate approximations to the grid-interval or 

grid-cell average.  In a finite-volume method, the grid-point value if  represents the 

average of a function, )(xf , over the interval (or grid cell) 
1 1

[( ) , ( ) ]
2 2

i x i x    , taking 
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a one-dimensional problem as an example.  Finite-volume methods are very useful for 

approximating solutions that contain discontinuities (e.g., Colella and Woodward 1984).   

 

12.2 Finite difference approximations of derivatives 

 Before discussing various finite difference methods, let us consider a simple example 

of a finite difference approximation to help us understand the approximation of 

derivatives of a given function.  For example, one may use the Taylor series to 

approximate )(xf  at xx  , 

 ....
!3

)('''
!2

)('')(')()(
32








x

xf
x

xfxxfxfxxf , (12.2.1) 

where x is the grid interval.  For convenience, x  is assumed to be greater than 0 in the 

following discussions.  The derivative of ( )f x  can be calculated from, 

 
( ) ( )

 ( , )
f x x f x

f '(x) R x x
x

  
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
, (12.2.2) 

where 
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is called the remainder, which has a magnitude of )( xO  .  If the remainder term is much 

smaller than the first term on the right side of (12.2.2), then the above equation can be 

approximated by 

 
( ) ( )

'( )D

f x x f x
f x

x

  



. (12.2.3) 

A differential equation becomes a finite difference equation when the derivatives are 

approximated by their finite difference forms, known as a forward difference scheme for 
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(12.2.3), which has a first order of accuracy.  The actual derivative, )(' xf , is 

approximated by the slope )(' xfD  (Fig. 12.1).  The distance between xxfxf  )(')(  

and )( xxf   is R x  .  When x  is reduced, the approximated derivative )(' xf , i.e. 

the approximated slope of )(xf , is closer to the real derivative.  As seen from (12.2.2) 

and Fig. 12.1, there are two ways to reduce the truncation errors:  (a) reducing the space 

interval ( x ) and (b) using a higher order approximation.   

 Similarly, the Taylor series expansion can also be expanded in a backward manner,  

 
2 3

( ) ( ) '( ) ''( ) '''( ) ....
2! 3!

x x
f x x f x f x x f x f x

 
       , (12.2.4) 

which can be rearranged in the following form: 
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xf . (12.2.5) 

Again, if the remainder term of the above equation is much smaller than the first term on 

the right side, then (12.2.5) can be approximated using the backward difference scheme, 

 
( ) ( )

'( )D

f x f x x
f x

x

 



. (12.2.6) 

The meaning of (12.2.6) can be easily understood by replacing xx  and x with x and 

xx  , respectively, in Fig. 12.1, where the approximated slope, )(' xf , is replaced by 

the straight line connecting )( xxf  and )(xf .  Like the forward difference scheme, 

the backward scheme has the first order of accuracy. 

 An alternative way to approximate the derivative is to subtract (12.2.4) from (12.2.1):  

 ....
!3

)('''2)('2)()(
3





x

xfxxfxxfxxf  . (12.2.7) 
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The derivative, )(' xf , can then be calculated from 

 R
x

xxfxxf
xf 






2

)()(
)(' , (12.2.8) 

where the remainder term  is defined as the following, 
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Neglecting the remainder term leads to the centered difference scheme, 

 
( ) ( )

'( )
2

D

f x x f x x
f x

x

   



. (12.2.10) 

Based on (12.2.9), the centered difference scheme has an accuracy on the order of 2x , 

which is the second order of accuracy.  The mathematical meaning of the centered 

difference scheme is depicted in Fig. 12.2.  When compared with Fig. 12.1, it is apparent 

that this scheme is more accurate than the forward finite difference scheme.   

 Sometimes an approximation of the second-order derivative is needed in solving the 

governing equations, such as that appearing in the diffusion terms.  One way to 

approximate the second-order derivative, )(" xf , is to add (12.2.4) to (12.2.1) and neglect 

the remainder term, 
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( ) 2 ( ) ( )
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f x x f x f x x
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x
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


. (12.2.11) 

 When an approximation is made, it is important to know the accuracy of the scheme 

obtained as a result of the approximation.  To determine the accuracy of finite difference 

methods, we may consider the centered difference approximation to the first derivative of 

the sine function, 
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L

x
Axf

2
sin)(  . (12.2.12) 

The first-order derivative can be easily obtained through analytical methods, 

 
L

x

L

A
xf

 2
cos

2
)('  . (12.2.13) 

Now, we can apply the centered difference scheme, (12.2.10), to )(' xf , 

 
   sin 2 ( ) / sin 2 ( ) /

'( )
2

D

A x x L A x x L
f x

x

    



, (12.2.14) 

which can be rearranged as 

 
    cos 2 / sin 2 /

'( )D

A x L x L
f x

x

 



. (12.2.15) 

Dividing the above approximation by )(' xf  yields 

 
Lx
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/2

)/2sin(
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







. (12.2.16) 

 The relationship between )(' xfD and )(' xf  is also sketched in Fig. 12.2.  From the 

above expression, we obtain 

 
'( ) 2

1    as    0
'( )

Df x x

f x L


   (12.2.17) 

because sin    when 0    .  In other words, the truncation error of the center 

difference scheme approaches 0 when x << L.  In order to obtain a good approximation, 

the grid interval chosen should therefore be much smaller than the wavelength.   

 Now let us consider a special wave with xL  2 , which implies that one wavelength 

is exactly equal to two grid intervals.  Such a wave is often called x2  wave.  

Substituting xL  2  on the right side of (12.2.16) leads to  
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 0
sin

)('

)('






xf

xfD . (12.2.18) 

The above equation implies that the centered difference scheme fails to represent 

accurately a x2  wave.  For a fixed grid interval, shorter waves are much more poorly 

represented by difference schemes than longer waves are.  In fact, long waves can be very 

accurately represented. 

 Examples of finite difference approximations of derivatives with various orders of 

accuracy can be found in Appendix 12.1. 

 

12.3 Finite difference approximations of the advection equation 

 One of the simplest finite difference time integration equations is the one-dimensional 

advection equation with a constant advection velocity (c), which composes of only one 

dependent variable, one time derivative and one spatial derivative,  

 0









x

u
c

t

u
, (12.3.1) 

where u represents a quantity, such as horizontal velocity or temperature, being advected 

in the x direction at a speed c. If the advection speed c is replaced by u, and u is the 

advective velocity in the above equation, it leads to one of the simplest nonlinear 

equations, the inviscid Burger equation.  An analytical solution of (12.3.1) is 

 )(),( ctxftxu  , (12.3.2) 

where f  is an arbitrary function, whose functional form is determined by u  at 0t  , or 

the initial condition, 0( )f x .  For example, if 
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,  (12.3.3) 

then 

 
 

2
0

2 2
( , ) ( ) ou a

u x t f x ct
x ct a

  
 

. (12.3.4) 

If the advection velocity is positive (negative), then the wave propagates to the right 

(left).  Note that (12.3.3), as mentioned in earlier chapters, is called the bell-shaped 

function, which has an amplitude ou  and a half-width a .  The physical meaning of the 

above solution is that ),( txu  constantly maintains its initial shape along the phase line, 

i.e. x-ct = constant.   This type of wave is also called nondispersive.  Such a wave or 

disturbance propagation is illustrated in Fig. 12.3.   

 In the following, we will discuss the characteristics of several popular numerical 

approximation of the advection equation that have been adopted in mesoscale numerical 

models.  Based on the number of time levels involved, these methods can be categorized 

as two-time-level schemes and three-time-level schemes.   

 

12.3.1 Two-time-level schemes 

 The finite difference schemes used to approximate )(' xf , as discussed in Section 

12.2, can also be applied to the time derivative. One can choose to adopt the forward, 

backward, or centered difference approximations.  The methods of forward or backward 

finite difference in time belong to the so-called two-time-level schemes because only two 

time levels are involved in each step of time integration.  On the other hand, using the 

second-order centered difference in time (leapfrog scheme) would be to use the so-called 
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three-time-level scheme since there are three times involved at each time step of 

integration. 

 

(a) Forward-in-time and centered-in-space scheme 

 We use this scheme to demonstrate that not every finite difference method can be 

used to obtain a usable numerical solution and also to prove that not every numerical 

method is numerically stable.  A natural choice in approximating the advection equation, 

(12.3.1), isby a combination of the forward difference of the time derivative and center 

difference of the spatial derivative on a time-spatial grid system shown in Fig. 12.4: 

 0
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  11
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
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








 



x

uu
c

t

uu iiii



, (12.3.5) 

where the superscript  and subscript i denote the time step and the grid point in space, 

respectively.  Of particular interest is predicting  u at time step 1  and grid point i  , i.e. 

1
iu , which can be obtained from the above equation, 

  
11

1   
2



 











 iiii uu

x

tc
uu . (12.3.6) 

Equation (12.3.6) is called the difference equation of the advection equation obtained 

using the forward-in-time and centered-in-space scheme.  The scheme’s algorithm is 

sketched in Fig. 12.4.  Initial conditions are needed in order to obtain values at time step 

2, while boundary conditions are needed at both the left and right boundary points, 1i   

and i n .  The interior points iu , 1 ,...,3 ,2  ni  at time step 1  are predicted by 
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(12.3.6), using the values of 
1, 1 ,  i i iu u u 

at time step .  The values at the boundary 

points, i.e. 1

1

u and 1
nu , are determined by the boundary conditions. 

 Although many schemes to approximate a differential equation exist, there is no 

guarantee that every numerical solution is well-behaved or stable.  A finite difference 

scheme is stable only if the solution at a fixed time t t  remains bounded as 0t  .  

When this occurs, the scheme is numerically stable.  Otherwise, it is numerically 

unstable.  To examine the numerical stability of the forward-in-time and centered-in-

space scheme, we consider the following sinusoidal wave in both time t and space x: 

 )(  ),(ˆ),( tkxiekutxu   , (12.3.7) 

where û  is the wave amplitude, k the wave number and   the wave frequency.  All three 

variables, ˆ,  ,  u k  , are complex numbers.  Both x  and t  can be represented by the grid 

and time intervals, respectively, ,   and  x n x t t    , where n  and  represent the grid 

and time intervals, respectively, from the origin )0 ,0() ,( tx .  Using these expressions, 

(12.3.7) can be rewritten as 

 )( ),(ˆ),(),( txkniekutxnutxu   . (12.3.8) 

Substituting the above equation into the finite difference equation, (12.3.5), yields 

     ( 1)
ˆ( , )

i kn x t i kn x t
u k e e

  


      
  

      ( 1) ( 1)
ˆ( , ) 0

2

i k n x t i k n x tc t
u k e e

x

 


       
  


, (12.3.9)  

or 

  1 sini te iC k x     , (12.3.10) 

where 
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x

tc
C




 , (12.3.11) 

is called the Courant number.  Substituting ir i  , where both r and i  are real 

numbers, on the left side of (12.3.10) yields 

 
titti ri eee

 
 . (12.3.12) 

The first term on the right side of the above equation represents the wave amplitude 

change in one time step t , while the second term represents the phase change per time 

step since the first term is a real number and the second term is an imaginary number.  Let 

tie



 , (12.3.10) becomes 

 xkCie
tri




sin  1 


 . (12.3.13) 

Equating the real and imaginary parts yields  

 1cos tr , and 

 xkCtr  sin  sin  . (12.3.14) 

Summing the squares of the above two equations gives 

 xkC  22 sin1 . (12.3.15) 

Combining (12.3.8), (12.3.12) and (12.3.13) leads to  

  ˆ( , ) ( , ) ri tikn xu x t u k e e      .  (12.3.16) 

In the above equation, only the last term on the right side, 
 , may change the amplitude 

as time proceeds. The other two terms inside the bracket, 
tixikn ree    and  , can only 

change the phase of these waves.  In order for the numerical stability to occur for 

(12.3.16), 1  is required.  However, (12.3.15) implies that the absolute value of is 
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always greater than 1.   Thus, the amplitude will grow with time and the scheme of 

forward-in-time and centered-in-space is unconditionally unstable since any small 

perturbations will grow indefinitely given enough time, and this type of stability analysis 

should be conducted prior to adopting a numerical scheme to approximate a differential 

equation.   

 

(b) Forward-in-time and upstream-in-space scheme 

 Another two-time-level scheme that has been adopted in mesoscale models is the 

forward-in-time and upstream-in-space scheme.  Under this scheme, the advection 

equation, (12.3.1), is approximated by 

 

1
1

1

, if 0 (12.3.17 )

, if 0 (12.3.17 )

i i

i i

i i

u u
c c a

u u x

t u u
c c b

x

 

 

 






 
   

 
  

 

.   

To check the stability of this scheme, we consider a positive constant advection velocity, 

c>0, without loss of generality and substituting (12.3.8) into (12.3.17a) 

  ( )
 1   1r ii i t ik xe C e

        , (12.3.18) 

or 

  xkCtr   cos-1  1cos  , (12.3.19a) 

 xkCtr  sinsin  . (12.3.19b) 

Summing the squares of the above equations yields 

 )1)(1 cos(21 CxkC  . (12.3.20) 

To insure the numerical stability ( 1 ), the above equation requires 



 

 

 

 

 

 

15 

 0)1)(1 cos(2  CxkC . (12.3.21) 

It holds if 1C  since )1(cos xk is always negative.  Thus, (12.3.21) requires 

cxt /  for the scheme to be stable, called the CFL (Courant-Friedrichs-Lewy) 

stability criterion.  Thus, the numerical scheme of forward-in-time and upstream-in-

space is conditionally stable.  

 The phase of a wave can also be altered by the application of numerical methods to 

solve differential equations.  We can investigate the phase characteristics of the forward-

in-time and upstream-in-space scheme by dividing (12.3.19b) by (12.3.19a) to obtain 

 
)1(cos1

sin
tan






xkC

xkC
tr . (12.3.22) 

Based on the above equation, the numerical phase speed is 

 













 

)1(cos1

sin
tan

1~ 1

xkC

xkC

tkk
c r

p


. (12.3.23) 

Equation (12.3.23) indicates that the finite difference scheme of forward-in-time and 

upstream-in-space is dispersive because the numerical phase speed is a function of the 

wave number.  Similar to what occurs in the physical dispersion, here waves with 

different wavelengths propagate at different speeds.  The wave therefore cannot preserve 

its original wave pattern, making it a dispersive wave (Ch. 3).  Interestingly enough, wave 

dispersion can be induced numerically as well as physically. 

 Based on the advection equation, (12.3.1), and (12.3.7), the physical phase speed for 

the advection equation can be obtained, 

 c
k

cp 


. (12.3.24) 
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According to the above equation, the wave is physically nondispersive since its physical 

phase speed is independent of the wave number.  However, the numerical method applied 

here does introduce a numerical wave mode and makes the wave dispersive artificially. 

The ratio of the numerical phase speed ( pc ) to the physical phase speed (cp) is 

 













 

)1(cos1

sin
tan

1
~

1

xkC

xkC

tkcc

c

p

p
, (12.3.25) 

which indicates that 

 pp cc ~  when 0.5 1.0C   and, 

 pp cc ~  when 0 0.5C  . (12.3.26) 

 A numerical method may introduce, in addition to numerical instability and numerical 

dispersion, numerical damping.  For example, when C = 0, 1, or k  0 (very long waves), 

we have = 1.  The aforementioned case means that the amplitude will be kept the same, 

which indicates that no damping exists under these special conditions.  However, this 

scheme tends to damp waves in general, especially at C = 0.5.  To demonstrate the 

damping characteristics, we use a truncated Taylor series approximation to the advection 

equation, (12.3.1), 

 2

2

2
1

!2

1
t

t

u
t

t

u
uu ii 









  ,  and (12.3.27) 
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2

2

1
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1
x

x

u
x

x

u
uu ii 











 . (12.3.28) 

Again, we may assume 0c   without loss of generality and substitute the above 

approximations into (12.3.17a),  
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   
       

             
        

  
 
 

,  

which can be rearranged to be 

 0
2

1

2

1
2

2

2

2




















xc

x

u
t

t

u

x

u
c

t

u
. (12.3.29) 

In addition to the original advection equation, this particular numerical scheme artificially 

introduces two additional terms that are caused by truncation errors.  If both xt   and  

approach 0, then the above equation reduces to the original differential equation.   Under 

normal conditions, however, they have non-zero values that introduce errors to the 

numerical solution.   

 One can prove that the last two terms are related to each other because 

 
2

2
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2

2

x

u
c

t

u









. (12.3.30) 

Substituting the above equation into (12.3.29) leads to 
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x

u

x

u
c
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u
c



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







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1
1 ,        C

2
c

c t
c x C

x



   


. (12.3.31) 

The solution obtained from the finite difference equation is similar to that of the above 

differential equation, which contains a spurious diffusion term.  The solution obtained, 

therefore, tends to be damped.  The term c is called the numerical diffusion coefficient.  

In the early days of numerical model development, the forward-in-time and upstream-in-

space scheme was used extensively due to its two-time-level simplicity and its low 

memory storage requirement.  However, its strong numerical damping characteristics and 
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failure to preserve the proper phase have generated serious criticism.  The technique is 

acceptable if advection or wave propagation is not dominant for a particular mesoscale 

phenomenon. However, if the subgrid mixing is important, c  must be smaller than the 

corresponding physically relevant turbulent exchange coefficient in order to avoid excess 

damping.  Thus, the development of increasingly accurate three-time-level schemes and 

the advancement of computing facility make this scheme less attractive to mesoscale 

modelers.   

 

(c) Lax-Wendroff scheme 

 This scheme was originally proposed by Lax and Wendroff (1960).  The procedure 

for computation is based on the grid stencil shown in Fig. 12.5 and is described as 

follows.  First, provisional values of u at provisional time step 1/ 2   and grid points 

1/ 2i   and 1/ 2i   are calculated at the points denoted by the cross symbol by applying 

the forward in time and centered in space scheme: 

 
x

uu
c

t

uuu iiiii








 




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11

2/1

2/1

2/

2/)(
, (12.3.32a)  
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


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2/

2/)(
. (12.3.32b) 

Then, applying the second-order centered difference scheme in both time and space to 

values at grid points 
iii uuu   and  ,, 2/1

2/1

2/1

2/1







  gives, 

 
x

uu
c
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uu iiii
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
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

 







 2/1
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2/1

1 

. (12.3.33) 
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Finally, substituting the above provisional values of 2/1
2/1




iu and 2/1

2/1



iu  from (12.3.32) 

into (12.3.33) leads to 

    
11

2

11

1 2
22



  iiiiiii uuu
C

uu
C

uu . (12.3.34) 

From computational point of view, 2/1

2/1

2/1

2/1  and  








ii uu  are provisional since they do not 

show up in (12.3.34); if (12.3.34) is used directly, there is no need to calculate or store 

them at all.  The scheme as given by (12.3.34) is a two-time-level scheme, just like the 

forward-in-time upstream-in-space scheme discussed earlier, and has therefore the same 

low storage requirement. 

 The Lax-Wendroff scheme has a truncation error of ][][ 22 tOxO  , meaning it has 

second-order accuracy in space and time, which is an improvement over the previous 

two-time-level scheme.  It can be derived that  

  
2/1

422

2
sin141 







 


xk
CC .  (12.3.35) 

Therefore, the Lax-Wendroff scheme is stable if 

 112 





x

tc
or      C . (12.3.36) 

That is, (12.3.36) satisfies the CFL stability criterion, and it can be proven that the last 

term of (12.3.34) serves as a damping term.  In fact, the Lax-Wendroff scheme can be 

viewed as a modification of the forward-in-time and centered-in-space scheme with 

damping.  For the shortest resolvable wavelength x2 , we have xk  / .  Substituting 

k into (12.3.35) yields 

 
221 C .  (12.3.37) 
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For the x4  wave, we have 

  
1/ 2

2 41 C C    .   (12.3.38) 

Thus, the amount of damping is quite large for shorter waves.   

 The phase error, 1 /pc c , can also be calculated from 

 
   1 2tan sin / 1 1 cos

  

p
C k x C k xc

c C k x

     


 
. (12.3.39) 

Since pc~ is a function of wave number (k), the Lax-Wendroff scheme is numerically 

dispersive.   The scheme has a predominantly lagging phase error except in cases of large 

wave numbers where 15.0  C .  

 The Lax-Wendroff scheme has been modified by the following formula and is also 

known as the Crowley scheme (1968): 

      
2112

2
11

2

11
1 221

12
2

22


  iiiiiiiiiii uuuu C
C

uuu
C

uu
C

uu

  (12.3.40). 

The last term in the above equation is the third-order space correction term.    

 

(d) Multi-stage schemes 

 The advection equation (12.3.1) can be generalized through the following form: 

 )(uF
t

u





 (12.3.41) 

where ( )F u is the forcing term that includes the advection term of (12.3.1).  To improve 

the accuracy of two-time-level schemes, the multi-stage scheme can be used to 

approximate (12.3.41), 
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 ),(~   utFuu 
 

   )(1)~(  1   uFuFtuu  
. (12.3.42) 

The above method reduces to the second-order Runge-Kutta schemes for any 

combinations of  and   leading to 2/1 , which leads to a special scheme called 

the Heun scheme when ,1 2/1 .  An example of a non-Runge-Kutta scheme is the 

forward-backward (Matsuno) scheme for which 1   (Matsuno 1966).   

 

12.3.2 Three-time-level schemes 

 (a) Adams-Bashforth scheme 

 Under the Adams-Bashforth scheme, (12.3.41) is approximated by  

 







  )(

2

1
)(

2

3
 11  uFuFtuu . (12.3.43) 

The advantage of this scheme is that it generates neither the time splitting produced by 

the leapfrog scheme nor the numerical diffusion produced by the upstream difference 

(e.g., Lilly 1965; Durran 1998).  The nonlinear advection terms and energy components 

may generate large errors with this scheme.   

 

(b) Leapfrog-in-time and centered-in-space schemes 

 The advection equation can also be approximated by the leapfrog (second-order 

centered) in time and second-order centered difference in space scheme, 
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22

11

11 

. (12.3.44) 
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Again, in order to examine the stability of this scheme, we substitute the wave solution 

(12.3.8) into (12.3.44).  This yield 
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CexkiC

e
e

t

ti

ti i

r

r




















    ;   ,sin 2 

1 



 


 . (12.3.45) 

The above equation can be rearranged to obtain 

 22 2 1 0r ri t i te i e        , (12.3.46) 

where sinC k x    is a temporary parameter.  Regarding ti re    as the unknown in the 

above equation, we obtain 

 
21ri te i        . (12.3.47) 

Separating the real and imaginary parts of the above equation gives two possible cases, 

namely, (1) 2 1  and (2) 2 1  .  In case 1, we have 

 
2cos 1r t      , (12.3.48a) 

 sin r t    .  (12.3.48b) 

Summing the squares of the above two equations yields 

 1 . 

Therefore, the leapfrog- in-time and centered-in-space scheme is neutral when 
2 1  . 

 In case 2, we have   

 0cos tr , (12.3.49a) 

 
2sin 1r t      . (12.3.49b) 

Summing the squares of the above two equations leads to 

  
2

2 2 21               if  1      . (12.3.50) 
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We may claim that this scheme is unstable when 2 1  .  To prove that this scheme is 

unstable when 2 1  , we only need to find one counter example for which 1 .  We 

can assume 1   , where  is a small positive number.  Substituting  into the 

positive root of (12.3.50) gives 

 21 2      . (12.3.51) 

Since either root is possible, we look at the solution with the positive root, 

 21 2       . (12.3.52) 

The above equation gives 1 .  Therefore, the leapfrog-in-time and centered-in-space 

scheme is unstable when 2 1  .  The stability is thus retained only when 2 1  .  Based 

on the definition of for (12.3.46), it requires 

 1sin 22 xkC . (12.3.53) 

Since the maximum value of the sine square function is 1, the above equation is satisfied 

when 

 1C . (12.3.54) 

In fact, the CFL criterion is not only a necessary condition but also a sufficient condition 

for the numerical stability of the leapfrog-in-time and centered-in-space scheme.   

 To demonstrate the phase characteristics associated with the leapfrog in time and 

second-order centered in space scheme, we divide (12.3.48b) by (12.3.48a): 
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2
tan

1
r t






  
   

 
, (12.3.55) 

which gives us the numerical phase speeds 
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1

2

1
tan

1

r
pc

k k t

 



  
   

  
. (12.3.56) 

The phase error can be obtained by comparing the numerical phase speed and the 

physical phase speed, 

  
1

2

1
tan

1

pc

c kc t





  
  

  
. (12.3.57) 

For 0c  , (12.3.56) has two solutions, one propagating to the right ( 0~ pc ), and the 

other propagating to the left ( 0~ pc ).  The first solution represents the physical mode 

because it approximates the solution to the original advection equation.   The second 

solution represents the computational mode, which is purely generated by the numerical 

scheme.  If the computational mode is not damped, it slowly amplifies and eventually 

becomes unstable while it propagates in an opposite direction (left) to the physical mode 

during the simulation of wave propagation.  The behavior of the computational 

(numerical) mode is a phenomenon known as time-splitting, and this scheme also induces 

numerical dispersion since the numerical phase speed is a function of wave number.  

 In summary, the leapfrog-in-time and second-order centered-in-space scheme 

preserves the amplitude when 2 1   (where sinC k x   ) but can generate phase 

errors.   Figure 12.6 compares the numerical solution of the leapfrog-in-time and second-

order centered-in-space scheme to that of the forward-in-time and upstream-in-space 

scheme and the analytical solution.  The numerical solutions are initialized by a 

rectangular wave centered at x = 0.  The figure indicates that this scheme preserves the 

amplitude of the initial rectangular wave much better than the forward-in-time and 
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upstream-in-space scheme.  However, it produces more severe numerical dispersion than 

the forward-in-time and upstream-in-space scheme (e.g., Haltiner and Williams 1980). 

 In addition to the second-order centered schemes for spatial difference, a scheme  

with higher-order accuracy can be derived.  For example, consider the following Taylor 

series expansions for )(  and  )( xxfxxf  , 
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32
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x
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xfxxfxfxxf  (12.3.58) 
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x

xf
x

xfxxfxfxxf . (12.3.59) 

Subtracting (12.3.59) from (12.3.58) leads to 

 ....)('''
3

1
)('2)()( 3  xxfxxfxxfxxf . (12.3.60) 

Now, consider the following Taylor series expansions for )2(  and  )2( xxfxxf  , 
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xfxxfxfxxf . (12.3.62) 

Subtracting (12.3.62) from (12.3.61) leads to 

 ....)('''
3

8
)('4)2()2( 3  xxfxxfxxfxxf  . (12.3.63) 

Eliminating f'''(x) terms from (12.3.60) - (12.3.63) yields  

 
   

)(
12

)2()2()()( 8
)(' 4xO

x

xxfxxfxxfxxf
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 . (12.3.64) 

Equation (12.3.64) gives a fourth-order centered difference scheme for )(' xf .  Note that 

the boundary points are approximated by adjacent interior points.  It can be shown that 
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(12.3.64) can be obtained by extrapolation for the value 2 / 3x  of the quotients of 

)(' xf from (12.3.62) and (12.3.63). 

 Now apply the fourth-order centered difference scheme in space and the leapfrog 

scheme in time to the advection equation (12.3.1), 

 
1 1

1 1 2 28 ( ) ( )
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i i i i i iu u u u u u
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   
    

  
  

. (12.3.65) 

Solve for 1

iu  , 
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C
u u u u u u      

        , (12.3.66) 

where C is the Courant number, as defined earlier.  It can be shown that 
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  (12.3.67) 

for the fourth-order centered difference scheme.  Compared with that of the second-order 

centered in space scheme, 
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, (12.3.68) 

we have 

   





 ...

!5

4
1 ~ 2

xkccp    for the fourth -order scheme, and (12.3.69) 
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

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
 ...

!3

1
1 ~ 2

xkccp    for the second-order scheme. (12.3.70) 

Both schemes are therefore numerically dispersive.  However, using the 4th-order scheme 

greatly increases in accuracy of the phase speed for longer waves (smaller k) (Fig. 12.7).  
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In addition, for shorter waves there is more numerical dispersion associated with the 

fourth-order scheme since the slope of c
4
 is larger than c

2
.   

 

12.4 Implicit schemes   

 With the above finite difference schemes, the advection term is evaluated at time step 

, thus the variables at time step 1   can be predicted explicitly by those at time step   

and/or 1  .  These schemes are referred to as explicit schemes.  However, all explicit 

advection schemes are, at most, conditionally stable numerically, and the CFL condition 

type stability criterion imposes a severe restriction on the time interval with a resultant 

increase in computational time, and this restriction can be relaxed by evaluating the 

advection term at time step 1 .  For example, the spatial differencing of (12.3.5), i.e. 

the forward-in-time and second-order centered in space scheme, can be applied at time 

step 1  ,  
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, (12.4.1) 

and this method is called the Euler implicit method (e.g., Tannehill et al. 1997).  In order 

to solve for u at time step 1 , we move all of them to the left side 

 1 1 1

1 1 ,      1,2,3,... 1,
2 2

i i i i

C C
u u u u i N     

        (12.4.2) 

where N is the total grid number.  Thus, one cannot solve the equation for a general point, 

1
iu , alone.  Instead, we have to solve the system of algebraic equations, as shown in Fig. 

12.8.  In Fig. 12.8, we have assumed that boundary conditions are as follows: 

1

0(0, ) 0u t u    and 1[ , ] 0Nu N x t u    .  If a zero-gradient boundary condition 
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( 0/  xu ) is imposed, then the coefficients at the upper left and lower right corners of 

the matrix in Fig. 12.8 become 2/1 C  and 2/1 C , respectively.  In general, one can 

introduce a weighting factor  and replace (12.4.2) by 

 1 1 1

1 1 1 1

(1 ) (1 )
,      1,2,3,... 1.

2 2 2 2
i i i i i i

C C C C
u u u u u u i N          

   

 
         

  (12.4.3) 

If 0 , the above formula reduces to the completely explicit scheme, i.e. the forward-

in-time and centered-in-space scheme, (12.3.6).  If 1 , the Euler implicit scheme, 

(12.4.2) is recovered.  To find out the numerical stability, we substitute (12.3.8) into 

(12.4.2) to obtain 

  
xkC 


22 sin1

1
 . (12.4.4) 

The above equation implies that the implicit Euler scheme is unconditionally stable 

because the right hand side of (12.4.4) is always less than 1.  In general, the use of an 

implicit scheme permits larger time steps than the explicit form without causing 

numerical instability.  To invert the matrix, either direct (e.g., Gaussian elimination, LU 

decomposition) or iterative (e.g., Jacobi, Gauss-Seidel, relaxation) methods can be 

applied.  Discussions of these methods can be found in numerical analysis textbooks. 

 To lessen the computational burden, semi-implicit schemes have been developed.  In a 

semi-implicit scheme, terms which are primarily responsible for the propagation of faster 

waves (e.g., gravity waves) are treated implicitly, while other terms are treated explicitly.  

For example, the linear shallow water x-momentum equation, (3.4.7), can be shown by 

the trapezoidal semi-implicit scheme (with primes dropped) as 
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1 1 1

1 1 1 1 1 1  0
2 2 2 2

i i i i i i i iu u u u g h h h h
U

t x x x

         

     
           

           
           

. (12.4.5) 

Note that the advection term is treated in explicit manner and the spatial derivative is 

centered at 2/1  time step by averaging values at time steps and +1, and it can be 

shown that the trapezoidal semi-implicit scheme is unconditionally stable (Mesinger and 

Arakawa, 1976).  Although theoretically a very large Courant number (or say, time 

interval) can be used with implicit schemes, practically there is a limit in its use.  For 

example, the trapezoidal semi-implicit scheme has a serious phase error when the 

Courant number is large (Haltiner and Williams, 1980). 

 

12.5 Semi-Lagrangian methods  

 Ideally, one should be able to integrate the advection equation by following the fluid 

particles in a Lagrangian manner, so that the local rate of change and advection terms do 

not have to be considered separately.  In fact, taking a Lagrangian approach, a graphical 

method has been developed to solve the barotropic vorticity equation using a single time 

step of 24 h by following a set of fluid particles (Fjortoft 1952).  However, in general a 

set of fluid particles, which are initially distributed regularly, will soon become greatly 

deformed and are thus rendered unsuitable for numerical integration (Welander 1955).  

To avoid this difficulty, the semi-Lagrangian method (occasionally referred to as quasi-

Lagrangian method) whereby a set of particles that arrive at a regular set of grid points 

are traced backward over a single time step to their departure points was proposed (Wiin-

Nielsen 1959).  The values of the dynamical quantities at the departure points are 

obtained by interpolating known values at neighboring grid points.  Note that in a semi-
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Lagrangian method, the set of fluid particles in question changes at each time step, which 

is different from the pure Lagrangian method.   In addition, a combination of these 

schemes, i.e. semi-Lagrangian semi-implicit scheme, has been proposed (Robert 1982; 

Staniforth and Côté 1991).   

 To examine the stability property of the semi-Lagrangian method, we consider the 

one-dimensional nonlinear advection equation in the form of total derivative, 

 0
Dt

D
, (12.5.1) 

where / / /D Dt t u x       and  is any variable under consideration.  By integrating 

over the trajectory of a fluid particle that arrives at a grid point xi , denoted as P in Fig. 

12.9, and at time t )1( , we have 

 1

* i

    , (12.5.2) 

where  *  is the value of  at the departure point of the particle at time t .  The value 

 *  is obtained by polynomial interpolation from the neighboring grid points.  The 

stability and accuracy of the scheme depends on the interpolation method used.  For 

example, we may consider the linear interpolation from the surrounding grid points 

( )i p  and ( 1)i p   for  * , 

 
xxptu

pipipi








 

  1*
, (12.5.3) 

where u is the advection velocity as represented in (12.5.1).  The above equation may be 

rearranged as 

    1*  












 pipipi p

x

tu
. (12.5.4) 
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or 

    1*  ˆ   pipipi , (12.5.5) 

where 

 xtup  /       ,ˆ  . (12.5.6) 

Therefore, from (12.5.2) we have 

    1

1  ˆ 

  pipipii . (12.5.7) 

According to (12.5.6) and Fig. 12.9, ̂  is the fractional part, and p is the integral part 

after advection of a non-dimensional distance xtu  / .  

 To examine whether the semi-Lagrangian method is numerically stable or not, we 

may again assume a wave-like solution, 

 ˆ ri t ikn x

i e e       . (12.5.8) 

Substituting (12.5.8) into (12.5.7) yields 

 
tiexk




      ),cos1)(ˆ1(ˆ212 . (12.5.9) 

Thus, in order to have a numerically stable solution ( 1 ), we require  

 1ˆ0  . (12.5.10) 

That is, the departure points must lie within the interpolation interval (i-p-1, i-p):  

however, this is just the choice of points used for interpolation.  Therefore, the semi-

Lagrangian scheme is unconditionally stable. 

 The semi-implicit method may be incorporated into the integration by treating the 

other terms, such as the pressure gradient force term in the momentum equation, as time 

averages along the trajectory, while the total time derivative is evaluated by either 
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leapfrog, forward or other time difference schemes.  To elucidate this, let us consider the 

following Boussinesq, horizontal momentum equation: 

 0
1







x

p
fv

Dt

Du

o
. (12.5.11) 

The total derivative of the above equation may be approximated by the forward-in-time 

scheme, 

 
t

taxuttxu

Dt

Du






),(),(
, (12.5.12) 

where 

 ttaxua  ),( . (12.5.13) 

Equation (12.5.12) can be solved by using an iterative method to obtain the upstream 

displacement or the departure point, a.  We can apply the semi-implicit approximation to 

the other terms on the left hand side of (12.5.11) 

 
2

),(),( taxttx
  t

av





 , (12.5.14) 

where the subscript av denotes the time average.  Then the horizontal momentum 

equation can be approximated by the semi-implicit semi-Lagrangian scheme, 

 
( , ) ( , ) 1

0

t

t

av

o av

u x t t u x a t p
fv

t x

     
   

  
. (12.5.15) 

The above equation can also be rewritten as 

           0
2 2

t t t
t t t t t t

x x a x x a
x x ao

f t t p p
u u v v

x x


 

 


       
               

. (12.5.16) 

Moving all terms at time tt  to the left hand side gives the followingsemi-implicit 

semi-Lagrangian equation: 
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        
2 2 2 2

t t t
t t t t t t

x x x a x a
x x ao o

f t t p f t t p
u v u v

x x 


 

 


        
           

. (12.5.17) 

This forms a set of linear algebraic equations, which can be written in a matrix form.  

Thus, a method for inverting the matrix can be applied to obtain the solution for time step 

tt  .  Note that the advantage of the semi-implicit semi-Lagrangian scheme is that it is 

unconditionally stable so that a relatively large time step can be used.  The disadvantage 

of this scheme is that the iterative method for finding the departure points and the method 

for inverting the matrix is computationally expensive. 

 

Appendix 12.1: Formulas for Finite Difference Approximations of Derivatives (Adapted 

after Gerald and Wheatley 2003) 

 

Formulas for the first derivative: 

),(
)()(

)(' xO
x

xfxxf
xf 




  (forward difference) 

),(
2

)()(
)(' 2xO

x

xxfxxf
xf 




  (second-order centered difference) 

),(
2

)(3)(4)2(
)(' 2xO

x

xfxxfxxf
xf 




   (as above except   

 for a left boundary point) 

 

).(
12

)2()(8)(8)2(
)(' 4xO

x

xxfxxfxxfxxf
xf 




  

 (fourth-order centered difference) 
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Formulas for the second derivative: 

),(
)()(2)2(

)("
2

xO
x

xfxxfxxf
xf 




  (forward difference) 

),(
)()(2)(

)(" 2

2
xO

x

xxfxfxxf
xf 




  (second-order centered difference) 

).(
12

)2()(16)(30)(16)2(
)(" 4

2
xO

x

xxfxxfxfxxfxxf
xf 




  

 (fourth-order centered difference) 

),(
)(2)(5)2(4)3(

)(" 2

2
xO

x

xfxxfxxfxxf
xf 




  (as above except 

 for a left boundary point) 

Formulas for the third derivative: 

).(
2

)2()(2)(2)2(
)(''' 2

3
xO

x

xxfxxfxxfxxf
xf 




   

 (centered difference) 

),(
)()(3)2(3)3(

)('''
3

xO
x

xfxxfxxfxxf
xf 




  (for a left boundary 

 point) 

Formulas for the fourth derivative: 

).(
)2()(4)(6)(4)2(

)( 2

4
xO

x

xxfxxfxfxxfxxf
xf iv 




  

 (centered difference) 

),(
)()(4)2(6)3(4)4(

)(
4

xO
x

xfxxfxxfxxfxxf
xf iv 




  (for a 

 left boundary point) 
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Problems 

12.1 Make a sketch similar to Fig. 12.1 except for the backward difference scheme of 

(12.2.6). 

12.2 Replace the sine wave by a cosine wave in (12.2.12), and show that you can obtain 

the same conclusion as (12.2.17). 

12.3  Show that if 0.5C  , then 2x waves are completely eliminated by the forward in 

time and upstream in space scheme.  Note that the 2 x wave can be represented by a 

function with two constants, a and b: ( 1)i

iu a b    , where i is an integer.  

 

12.4 Prove that (12.3.26) by plotting pp cc /~ as a function of the Courant number ( C ), 

according to (12.3.25).   

12.5 Prove (12.3.34).  
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12.6 Derive (12.3.35). 

12.7 Prove (12.3.67): 
xk

xk

xk

xk

c

cp











2

2sin

3

1sin

3

4
.  

12.8 Prove that the coefficients at the upper left and lower right corners of the matrix in 

Fig. 12.8 for the Euler implicit scheme become 2/1 C and 2/1 C , respectively. 

 

Modeling Projects 

Project A 

12.A1 An advection model (advec1.f), which is written in FORTRAN, solves a one-

dimensional advection equation numerically.  This model may be obtained from the 

website: http://www.cambridge.org/9780521808750.  There is no need to be 

concerned with the numerical details of the model at this moment.  Run the program 

to generate a data set and modify the plotting program (sample_plot.f) to plot the 

curves (not contours).  You can adjust the flag "NPR" to write out the data for one 

or more time steps, and then plot these curves.  Explain your results. 

12.A2 Modify the program to have two different initial fields (e.g., the shape and 

amplitude of the initial field U1), plot and then explain the results. 

12.A3 Repeat project 12.A2 for a nonlinear case by setting NL=1.  Describe your results. 

 

Project B 

12.B1  Make some sensitivity tests on the Advection Model (Project A) to find out the 

maximum time interval ( t ) that gives a well-behaved solution.  Construct a table 

http://www.cambridge.org/9780521808750
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for the cases you have performed that shows the maximum amplitude of 'u  versus 

the time interval.   

12.B2  Based on the Advection Model, develop it into a Tank Model with the one-layer 

shallow water equations 

   0
''

)'(
'
















x

h
g

x

u
uU

t

u
, 

   0
'

)'(
'

)'(
'
















x

u
hH

x

h
uU

t

h
, 

 The above equation set has been discussed in Section 3.4.  You may follow the 

following procedure for the model development: 

(i) Define a new variable for 'h  with the same dimension as 'u  adding finite 

difference approximation of (g xh  /' ) to the advection model by mimicking 

the approximation of xu  /' . 

(ii) Once the horizontal momentum equation, i.e. the first equation, is finished, 

then simply formulate the continuity equation, i.e. the second equation, by 

replacing 'u  by 'h  and g by ( ')H h . 

(iii) When you implement the second equation of h' into your model, you need to 

adopt a lateral boundary condition analogous to that used in u' by simply 

replacing u’ by h’. 

12.B3  

(a)  Run the Tank Model with U = 0 by giving an initial field, at your choice, in either u' 

or h', 

(b)  Repeat (a), but use a basic wind, i.e. 0U .   
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Plot and explain your results.  Perform both linear and nonlinear simulations by 

resetting the flag NL. 

12.B4 Extend your tank model to a two-layer tank model with a bottom topography, i.e.  

 0
'

'
'

)'(
'
















x

h
g

x

u
uU

t

u
, 

 
x

h
uU

x

u
hhH

x

h
uU

t

h s
s



















)'(

'
)'(

'
)'(

'
. 

Then simulate a flow with 110U ms  over a bell-shaped bump, i.e. 

2 2 2/( )s mh h a x a  .  Describe and explain your results.  Again, run for both linear 

and nonlinear cases.  Perform several experiments to obtain both solutions with 

supercritical and subcritical flow regimes (see Sec. 3.4). 
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12. Basic numerical methods 

 

Figure Captions 

Fig. 12.1: A sketch of the forward finite difference scheme, based on (12.2.3). 

Fig. 12.2: A sketch of the relationship of )(' xf  and its centered difference 

approximation, )(' xfD . 

Fig. 12.3: A sketch of the propagation of ),( txu along a constant phase line, x-

constant 0ct   . 

Fig. 12.4: The grid system and algorithm for the forward-in-time and centered-in-space 

finite difference scheme of the advection equation. The values of u at t = 0 are 

provided by the initial condition (i.c.), and the values at the left and right boundaries 

are determined by the boundary conditions (b.c.). 

Fig. 12.5: Grid stencil for the Lax-Wendroff scheme.  

Fig. 12.6: An example of numerical damping and dispersion. Comparisons between the 

analytical solution (thin sold curve) and numerical solutions of applying the leapfrog 

in time and second-order centered in space scheme (dashed curve) and the forward in 

time and upstream in space scheme (heavy solid curve) to the advection equation with 

an initial rectangular wave centered at x = 0.  Three nondimensional times are shown.  

(Adapted after Wurtele 1961) 

Fig. 12.7: The numerical phase speeds of the second-order ( 2c ) and fourth-order ( 4c ) 

centered difference schemes.  The phase speed of the linear advection equation 

(12.3.1) is c.   (Adapted after Mesinger and Arakawa 1976) 
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Fig. 12.8: The system of algebraic equations of (12.4.2) for the Euler implicit method 

with boundary conditions, 1

0(0, ) 0u t u   and 1( , ) 0Nu N x t u    , where N is the 

total number of grid intervals.  

Fig. 12.9: A schematic of the semi-Lagrangian method.  A fluid particle that arrives at a 

grid point i x and at time ( 1) t   is denoted as P, which is located at *x and at time 

t .  The value of the variable at this time and location (  * ) is obtained by 

polynomial interpolation from the neighboring grid points, 1 i p

    and  i p

  , as 

expressed in (12.5.4) or (12.5.5). 
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Fig. 12.1: A sketch of the forward finite difference scheme, based on (12.2.3). 

 

 



 

 

 

 

 

 

43 

 

 

 

 

Fig. 12.2: A sketch of the relationship of )(' xf  and its centered difference 

approximation, )(' xfD . 
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Fig. 12.3: A sketch of the propagation of ),( txu along a constant phase line, x-

constant 0ct   . 
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Fig. 12.4: The grid system and algorithm for the forward-in-time and centered-in-space 

finite difference scheme of the advection equation. The values of u at t = 0 are provided 

by the initial condition (i.c.), and the values at the left and right boundaries are 

determined by the boundary conditions (b.c.). 



 

 

 

 

 

 

46 

 

+1

t

x

+ 1
2

i i+1

/

i-1
2/ i+1

2/

t

t

t
i-1

 

 

Fig. 12.5: Grid stencil for the Lax-Wendroff scheme.  
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Fig. 12.6: An example of numerical damping and dispersion. Comparisons between the 

analytical solution (thin sold curve) and numerical solutions of applying the leapfrog in 

time and second-order centered in space scheme (dashed curve) and the forward in time 

and upstream in space scheme (heavy solid curve) to the advection equation with an 

initial rectangular wave centered at x = 0.  Three nondimensional times are shown.  

(Adapted after Wurtele 1961) 
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Fig. 12.7: The numerical phase speeds of the second-order ( 2c ) and fourth-order ( 4c ) 

centered difference schemes.  The phase speed of the linear advection equation (12.3.1) is 

c.   (Adapted after Mesinger and Arakawa 1976) 
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Fig. 12.8: The system of algebraic equations of (12.4.2) for the Euler implicit method with 

boundary conditions, 1

0(0, ) 0u t u   and 1( , ) 0Nu N x t u    , where N is the total 

number of grid intervals.  



 

 

 

 

 

 

50 

 

(i-p-1)Dx (i-p)Dx iDx
uDt

pDx

y
i-p-1

y
i-p

y
i
+1

P( +1)Dt

Dt x
*

y
*

( )

Dx
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Fig. 12.9: A schematic of the semi-Lagrangian method.  A fluid particle that arrives at a 

grid point i x and at time ( 1) t   is denoted as P, which is located at *x and at time 

t .  The value of the variable at this time and location (  * ) is obtained by polynomial 

interpolation from the neighboring grid points, 1 i p

    and  i p

  , as expressed in (12.5.4) 

or (12.5.5).   

 

 

  

 

 

 

 


