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Lecture Note 4  
 

 In Lecture Note 3, we have discussed various numerical 

approximations of the advection equation.   
 

 However, to simulate a real geophysical fluid system, such as 

the atmosphere and ocean, we need to integrate a set of 

governing equations over a finite domain, which requires to 

choose domain size, grid size, time interval, total integration 

time, as well as to consider other factors, such as the initial 

condition, boundary conditions, etc.   

 

 
 

 

 

 

 

 

 

 

 

 In addition, when we deal with a real fluid system, the 

governing equations are much more complicated than the one-

dimensional, linear advection equation, as considered in the 

previous chapter (Ch. 12),   
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 For example, we have to integrate a set of 3D nonlinear 

governing equations with several dependent variables, instead 

of the 1D advection equation with only one variable.  
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 p RT  (Equation of state) 

 

 When a nonlinear equation is being approximated by 

numerical methods, one may face new problems, such as 

nonlinear computational instability and nonlinear aliasing, 

and numerical splitting.  Special numerical techniques are 

needed to avoid this type of problems.  
 

 Once optimal approximate forms of the equations are 

selected, however, it is still necessary to define the domain 

and grid structure over which the partial differential equations 

to be integrated.   
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 In this chapter (Ch. 13, Lin 2007), we will also discuss about 

how to build a numerical mesoscale model based on a set of 

partial differential equations governing a shallow water 

system, hydrostatic continuously stratified fluid system, and 

nonhydrostatic continuously stratified fluid system.   
 

 

13.1 Grid Systems and Vertical Coordinates 
 

 One important step in developing a numerical model to 

simulate a mesoscale system is to determine appropriate 

domain size, grid intervals, time interval, and total integration 

time of the model. 
 

 Selection of the domain size, grid interval, total integration 

time and time interval in a mesoscale model is usually 

determined by both physical and numerical factors, such as: 

 

(1) Spatial scales and dimensionality of the forcing and 

physical processes 

(2) Time scales of the forcing and the fluid responses to 

the forcing  

(3) Limitations of predictability of the atmospheric 

phenomena  

(4) Stability criterion of the adopted numerical scheme  

(5) Availability of computer resources.  

 

  
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 To represent mesoscale systems properly, it is required that: 
 

(a) The meteorologically significant variations in the 

dependent variables caused by the mesoscale forcing and fluid 

responses are contained within the model, and  

 

(b) The averaging volume used to define the model grid 

spacing must be sufficiently small, so that the mesoscale 

forcing and responses are accurately represented. 

 

 In mesoscale modeling and numerical weather prediction, as 

well as general computational fluid dynamics, one needs to 

accurately represent multiscale processes in a finite domain.   

 

 On one hand, it is important to capture the smaller-scale 

weather systems.   

 

Thus, the grid and time intervals should be fine enough to 

resolve these small scale weather systems and processes.   
 

 On the other hand, it is equally important to capture the 

larger-scale environment, which is responsible for the 

formation and modification of the small-scale weather system.   

 

Therefore, model domain should be large enough to enclose 

the large-scale environment.   
 

 Problems can arise if a domain is inappropriately selected.   
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For example, Fig. 13.1 shows some numerically simulated 

results of horizontal wind field for a hydrostatic flow over a 

bell-shaped mountain with a half-width of a and a height of h, 

))/(1/()( 2axhxh  , but with 2 different domain sizes, 12a 

and 22.4a.  

  
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13.1: Sensitivity of flow responses to the numerical domain size for a hydrostatic flow 

over a bell-shaped mountain.  Displayed are the horizontal wind fields for different domain 

sizes: (a) 22.4a and (b) 12a, where a is the half-width of the mountain. The abscissa and 

ordinate are non-dimensionalized by a and 2 /U N  (vertical wavelength), respectively.  The 

Froude number is 1.2 for both cases. (Lin and Wang 1996; Lin 2007) 

 

In the figure, the horizontal axis is nondimensionalized by a, 

while the vertical axis is nondimensionalized by the 

hydrostatic vertical wavelength ( NU /2  ).   
 

Both cases have the same Froude number, 2.1/  NhUF , 

which is the only nondimensional control parameter for a 

two-dimensional, hydrostatic, nonrotating, inviscid flow past 

a mesoscale mountain, as discussed in Ch. 6.   
 

The results have been strongly influenced by the domain size 

since the flow responses over the mountain are strongly 
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influenced by the upstream flow conditions at the left 

boundary of the numerical domain.   
 

 The upstream flow conditions, such as the basic horizontal 

wind and Brunt-Vaisala frequency, at the left boundary have 

been influenced by the upstream propagating disturbances 

generated by the orography.   
  

 Thus, if an inappropriate domain size is chosen to perform 

numerical simulations, the results may be contaminated by 

numerical factors.   

 

 The numerically simulated results are often verified by model 

intercomparison (e.g., Doyle et al. 2000 for MAP; Doyle 2011 

for T-REX) and observations from field experiments.   
 

 Once the domain size is chosen, the next natural step is to 

choose an appropriate grid size or grid interval.   

 

The determination of the horizontal grid size used in a 

numerical model depends on spatial scales of the forcing, 

fluid responses, and numerical stability. 
 

 The grid interval should well represent the forcing and fluid 

responses; otherwise the simulated results will not be 

accurate.   
 

 After the domain size, grid interval and grid structure are 

chosen, the next step is to choose the time interval.   

chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/http:/twister.ou.edu/papers/Doyle2000.pdf
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/http:/elib.dlr.de/70959/1/MWR-D-10-05042.pdf
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This is normally determined by the time variation of the 

forcing and stability criterion, which depends on the 

finite difference method or the numerical method 

adopted.   

 

The linear stability criterion, as discussed in the last chapter, 

may serve, as a first guess of the time interval needed to 

guarantee the computational stability of the model.   

 

As will be discussed later, nonlinear equations have a stricter 

criterion on computational stability, which is related to the 

time scale and the predictability of the weather phenomenon 

interested, and the computing resources available.    
 

 

13.1.1 Grid Systems 
  

 Different types of grid meshes may be adopted:  
 

 (a) uniform grid mesh,  

 (b) stretched grid mesh,  

 (c) nested grid mesh,  

 (d) movable grid mesh,  

 (e) adaptive grid mesh,  

 (f) unstructured grid mesh, and  

 (g) staggered grid mesh.   

  

 Some of them can be combined in a model. 
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 For a uniform grid mesh, grid intervals are set to be equal.   

 

Advantages: easy to code onto a programming language 

and simple to input geographic features into the model.   

 

Disadvantages: (1) it is difficult to properly incorporating 

both large and small features within the same model 

domain, (2) cannot resolve weather systems in areas need 

high resolution, (3) does not conserve mass.    

 

For example, if one uses the same grid interval in vertical, 

it will be difficult to properly resolve the boundary layer 

circulation, while it is more than enough to resolve 

circulation in the free atmosphere (i.e., above the boundary 

layer), especially in the upper troposphere.   

 

In general, uniform grid spacing at all levels is not feasible 

due to the limitation of computing speed.   

 

 In the stretched grid mesh, the grid intervals vary spatially.   
 

Advantages: a much larger domain than the uniform grid 

mesh with the same number of grid points can be adopted 

for numerical simulations.   

 

By adopting a grid mesh stretched from a finer resolution 

near the surface to a relatively coarse resolution in the 

upper troposphere and stratosphere allows a model to 
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resolve smaller-scale turbulent motions present in the 

planetary boundary layer.   
 

Disadvantages:  

(a) Difficult to code the finite difference equations onto the 

computer, and  

(b) Reflections may occur if the grid intervals are stretched 

too much (Klemp and Lilly 1978).   
 

In many mesoscale and NWP models, the vertical grid is 

often stretched.  The vertical turbulent mixing provides a 

measure of needed grid resolution.   

 

In general, mesoscale and NWP models have the smallest 

grid increments near the ground, because of the planetary 

boundary layer circulation, and the grid mesh stretches 

upward.   

 

 

 

 

 

 

 

 

 

 

In order to avoid internal reflection from the internal 

boundaries, a smooth transition from the fine to coarse 

resolution is desirable.   
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The vertical stretch of the grid intervals may be defined by 

a known function, such as a logarithmic function, or 

specified by particular heights.    

 

A two-way stretching may also be used.  For example, in 

simulating flow with a critical level ( cz ), where the basic 

wind speed equals to the phase speed of a propagating 

wave [ czU c )( ], a much finer resolution is required to 

resolve the wave which has vertical wavelength 

approaching 0 in the vicinity of the critical level.  Under 

this situation, one may need to define a stretching grid 

mesh having a very fine resolution near the critical level 

and stretches to coarser resolution both upward and 

downward. 

 

 An alternative to the stretched grid approach is to insert a 

fine-mesh grid mesh, i.e. a nested grid mesh, inside a 

coarse grid (see figure above (on p.12)).   

    

In this way, it allows us to simulate the small-scale 

features, which are not resolvable by using the coarse grid 

mesh.   
 

The coarse mesh provides the boundary conditions of the 

fine mesh.   

 

Two types of grid nesting can be used in this type of grid 

meshes:  
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(i) One-way nesting or parasitic grid representation: 

Only permit disturbances in the coarse grid mesh 

to enter the fine nested grid mesh.   

 

(ii) Two-way interaction: Permit disturbances to 

enter and leave the fine nested grid mesh.   

 

Advantages: Allows smaller-scale weather systems and 

processes to be simulated without overstretching the 

computational time. 

 

Disadvantages:  

(1) Inaccurate interface boundary conditions will lead to 

inaccurate numerical solutions in the inner domain 

(one-way nesting) or in both domains (two-way 

nesting).  

 

(2) The interaction among multiple nested meshes, 

particularly the tendency for propagating dispersive 

waves to discontinuously change their speeds upon 

passing from one mesh to the next and to reflect off 

the boundaries of each nested grid mesh, has been a 

topic of great concern (Dietachmayer and 

Droegemeier 1992). 

 

 The above mentioned nested grid mesh can also be 

designed to move with a weather system (movable grid 

mesh), such as a cyclone, hurricane, front, or thunderstorm.   
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Advantages:  it can follow the weather system and always 

provides a finer resolution needed in the vicinity of the 

weather system.    

 

Disadvantages: One must know a priori, and for the 

duration of the calculation, which regions of the domain 

will require higher spatial resolution.    
 

 To improve the nested grid and movable grid techniques, 

the adaptive grid mesh techniques have been proposed.   
 

Grid points may be added in a structured manner through 

the placement of multiple and perhaps overlapping finer-

scale grids in the domain (Berger and Oliger 1984).   
 

 Fig. 13.2 shows one example of using 4 adaptive grid 

meshes to simulate the evolution of a density current 

produced by a prescribed cooling (Skamarock et al. 1989; 

Skamarock and Klemp 1993).   
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13.2: Potential temperature fields at (a) 450 s and (b) 900 s in a cold pool collapse 

simulation using adaptive grid meshes. (After Skamarock 1989) [From Lin 2007] 
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 Regions of strong potential temperature gradients along the 

gust front and Kelvin-Helmholtz billows are well 

simulated. 
   

 In the adaptive grid mesh, a fixed number of grid points or 

collocation points may also be redistributed in a 

predetermined manner to provide locally increased 

resolution and thus an improved solution in certain regions 

of the domain. 
 

 Fig. 13.3 shows a simulation of kinematic frontogenesis, 

which is similar to a smoothed Rankine vortex being 

advected by a steady, nondivergent field, using this type of 

structured continuous dynamic grid adaptation.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13.3: (a) Exact solution of a passive scalar Q at t = 4 s for a kinematic frontogenesis being 

advected by a steady, nondivergent flow field with structure similar to that of a smoothed 

Rankine vortex (Doswell 1984). (b) Numerical solution for Q at t = 4 s on a fixed 31x31 uniform 

grid mesh. (c) Numerical solution for Q at t = 4 s using a continuous dynamic grid adaptation 

(CDGA). (d) Gridpoint distribution at t = 4 s with default parameters. (Adapted after 

Dietachmayer and Droegemeier 1992) [From Lin 2007] 
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 With both 31x31 grid points, the result (Fig. 13.3c) by using 

CDGA (Fig. 13.3d) is much better than that of uniform grid mesh 

(Fig. 13.3b), comparing with the exact solution (Fig. 13.3a).   

 

 One limitation of this type of structured adaptive grid mesh is that 

it is not suitable for dynamic grid adaptation because the grid 

generation requires a high degree of user interaction and user 

expertise.  Thus, it is not an easy task to apply this type of method 

for real-case simulations.   

 

 In order to resolve the problem, the unstructured grid mesh has 

been proposed in dealing with both large- and small-scale features 

without having to engage nested grid mesh.  

 

 One example is the unstructured grid mesh generated by the 

OMEGA model (Bacon et al. 2000), in which triangles are used as 

the base cells. 

http://www.gulflink.osd.mil/al_muth/al_muth_refs/n58en096/over

view.html  

 
 One disadvantage of this approach is how to resolve the physics 

parameterization across various scales. 

 Omega animations:  

https://vortex.leidos.com/sims/hurricane/ 
 Newly adopted icosahedral-hexagonal grid by global NWP models 

(NOAA FIM & NIM models,  

NCAR MPAS model).  

 

   

 

 

 

http://www.gulflink.osd.mil/al_muth/al_muth_refs/n58en096/overview.html
http://www.gulflink.osd.mil/al_muth/al_muth_refs/n58en096/overview.html
http://fim.noaa.gov/
http://www.esrl.noaa.gov/gsd/learn/handouts/NIM-2014.pdf
https://mpas-dev.github.io/
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(g) Staggered Grid Mesh   

    

 When a system of governing equations with several unknown 

variables, such as the shallow water system discussed in section 4.4 

of Lin (2007), then the variables do not necessarily have to be defined 

on the same grid points.   

 

Instead, they can be staggered with respect to each other at different 

grid points.  This type of grid system is called staggered grid mesh, 

which is motivated by the need to preserve some conservation 

relations.   

 

o For example, Lilly (1961) proposed a staggered grid system that 

helps preserve the total kinetic energy. 

o In this type of grid mesh, the variables are staggered with 

respect to each other. 

 

 Consider the 2D incompressible continuity equation, 

 

  

0









z

w

x

u
. (13.1.1) 

 
  

 

 

 

 

 

 

 

 

 

Fig. 13.4: A schematic of (a) an unstaggered grid mesh and (b) a staggered grid mesh for the 

computation of u and w with the two-dimensional incompressible continuity equation. 
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Staggered grid in MPAS: 

file:///D:/Documents/1.2_NWP%20(EES753)/LECTURE%20NOTES/MPAS%20(grid%20structure.vert.coord.).htm 
For an unstaggered grid mesh (Fig. 13.4a), a simple finite 

difference form may be written 
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   (13.1.3)

   

For a staggered grid mesh (Fig. 13.4b), a simple finite difference 

form may be written 
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where u is defined to be located half-way between the grid 

points at which w is defined.   

 

file:///D:/Documents/1.2_NWP%20(EES753)/LECTURE%20NOTES/MPAS%20(grid%20structure.vert.coord.).htm
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Thus, staggering the dependent variables as given by (13.1.4) 

increases the effective resolution by a factor of two, since 

derivatives are defined over an increment x, for instance, rather 

than 2 x, yet without requiring averaging as in (13.1.2). 

 

 To examine the computational stability and phase velocity 

associated with a staggered grid mesh, we may consider 

applying the leapfrog in time and second-order centered 

difference scheme to the two-dimensional version of the 

shallow water equations, Eqs. (4.4.21) and (4.4.23), with U=0 

on a staggered grid mesh as shown in Fig. 13.5, 
 

 

 

 

 

 

 

Fig. 13.5:  A schematic of a staggered grid mesh for the shallow water system.  
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It can be derived that the computational or discrete dispersion 

relationship for the above system is  
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where gHc   are the shallow-water phase speeds.  Since the 

solutions of the two-dimensional shallow water wave system are 

neutral, a real   is required.  Thus, a stable solution requires 

2/1/  xtcC .  It can also be derived that the stability 

criterion for an unstaggered grid mesh is 1C .  Therefore, the 

maximum time interval for a staggered grid system is half of the 

corresponding unstaggered mesh system, which implies that the 

computational time is almost doubled.   

 

This more stringent requirement on integration time interval 

may be compensated by an improved computational phase speed 

in using a staggered grid mesh, as shown in Fig. 13.6.   

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13.6: Phase speed as a function of spatial resolution for the exact solution (E), for second- 

(2U) and fourth-order (4U) spatial derivative on an unstaggered grid mesh, and for second-order 

spatial derivatives on a staggered grid mesh (2S). Symbol  denotes one grid interval.  (After 

Durran 1998, with kind permission of Springer Sciences and Media.) [Lin 2007] 

 
Fig. 13.7 shows five grid meshes proposed by Arakawa and Lamb 

(1977).  For staggered grid meshes, grid meshes B and C, which are 
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often referred to as Arakawa-B grid and Arakawa-C grid in numerical 

modeling community, can better preserve the phase speed and group 

velocity (Fig. 13.7). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13.7: (a) Five grid meshes proposed by Arakawa and Lamb (1977). The computational 

phase velocity ( kcp / ) and the group velocity ( /gc k   ) analyzed as functions of /kd

for the four grids as shown in panels (b) and (c), respectively (Schoenstadt 1978).  The 

differential equation solution is also included.  These results use the following values: 
1210  msgH , f=10-4 s-1, and d=500 m, where d is the grid interval depicted in panel (a).   

(Adapted after Arakawa and Lamb 1977) 

 

 WRF adopted the Arakawa C grid system. 

 Grid structure in MPAS: 

file:///D:/Documents/1.2_NWP%20(EES753)/LECTURE%20NOTES/MPAS%20(grid%20struct

ure.vert.coord.).htm 

http://cires.colorado.edu/science/groups/pielke/classes/at7500/Bianco_PresentationWRF.pdf
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13.1.2 Vertical Coordinates 

  
 In simulating a mesoscale flow in a finite domain, the height 

vertical coordinate may propose problems.   

 

 For example, it may intercept the terrain in a mountainous area and 

creates a problem in dealing with the lower boundary condition.   

 

Similar problems happen to the pressure coordinate and isentropic 

coordinate when isobaric surfaces and isentropic surfaces intercept 

the lower boundary, respectively.   This may happen where there 

exists a blocking by the orography.   

 

 To avoid the problem, Phillips (1957) proposed a vertical sigma 

coordinate, which matches the lowest coordinate surface with the 

bottom topography.   

 

In this type of vertical p  coordinates, the pressure coordinate 

is normalized by the surface pressure, ps,   

 

  
Sp

p
 . (13.1.8) 

 

Thus, = 1 at the surface and = 0 at the top of the atmosphere.   

 

The  vertical velocity, DtD /  , is 0 at both the surface and 

top of the atmosphere.  In Eq. (13.1.8),  may also be defined as  
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where Tp is the pressure at the top of the numerical domain.   
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The same concept may also be applied to the isentropic 

coordinate, in which  may defined as 
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This type of coordinates is called    coordinates.    

 

One of the advantages of the vertical isentropic coordinate is that it 

can resolve the vertical structure of weather systems, such as 

tropopause folding and upper-level frontogenesis.   

 

When the sigma coordinate is applied to the height coordinates, it 

is called z  or the terrain-following coordinates in which  may 

be defined as 
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where Sz is the height of the lower surface in the z  coordinate, 

which is independent of time, and Tz is a constant domain height 

or the constant height of the terrain-following part of the domain.   

 

In a general  coordinate, the pressure, p, may be written as 

  

  ]),,,,(,,[),,,( ttzyxyxptzyxp  . (13.1.11) 

 

The pressure gradient in x direction in the z coordinates may be 

obtained by performing the chain-rule, 
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If one replaces p by a general variable A, then the above 

transformation may be used to derive the gradient of A in x 

direction.   

 

The pressure gradient ( xp  / ) 

in the  coordinate may be 

obtained by deriving  zx /

from (13.1.10) and substituting 

it into (13.1.12), 
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 The Advanced Research WRF 

(ARW) model uses a terrain-

following hydrostatic-pressure 

vertical coordinate (-p) 

(Skamarock et al. 2008). 
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where ph is the hydrostatic component of the pressure, and phs and 

pht refer to values along the surface and top boundaries, 

respectively.  It was proposed by Laprise (1992). 

 

http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf


 

 

 

 

 

 

24 

The boundary conditions assumed are p=const at the top boundary 

(=0), and 0 at =0 and at the horizontal parts of the ground 

surface ( S  ).   

 

 One problem of the sigma vertical coordinate systems is that errors 

in two terms of the pressure gradient force do not cancel out 

(Smagorinski et al. 1967; also see the review in Mesinger and 

Janjic’ 1985).   

 

To avoid this problem, Mesinger et al. (1988) adopted a 

completely different vertical coordinate, the step-mountain or eta 

coordinate, in the NCEP ETA model.  In that model, eta (  ) is 

defined as 
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  With 
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 In the above equations, p is pressure; the subscripts T and S denote 

the top and surface values of the model atmosphere; z is geometric 

height, and )(zprf  is a suitably defined reference pressure as a 

function of z.   

 A third method is to adopt a finite-element approximation of the 

governing equations, which simply approximate the mountain 

surface by one side of the finite elements.   

 

There is no coordinate transformation needed in this approach.  It 

has the same advantage of not having to transform the governing 
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equations into complicated forms as well as having a higher-order 

accuracy compared to the step-mountain coordinate.   

 

Perhaps this is a better way to treat the lower-boundary condition; 

however, the finite-element method is a completely different 

method from the more popular finite-difference methods.  This 

makes it difficult to apply if the model uses a finite difference 

method. 

 

 So far, we have discussed about how to set the domain size, 

vertical and horizontal grid intervals, grid mesh and vertical 

coordinate.   

 

However, we still need to find (a) the temporal values of 

variables at the beginning of the integration, and (b) the 

boundary values at a finite domain.   

 

These are required by the fact that we are solving the 

initial-value and boundary-value problems mathematically. 

 

 13.2 Boundary Conditions 

  

 To make the mathematical problem well posed, appropriate 

boundary conditions need to be specified in any limited-

area models, such as mesoscale and numerical weather 

prediction models. 

 

 If the model domain represents only part of the atmosphere 

in every direction, then boundary conditions are needed at 

the top, lateral, and lower boundaries of the model domain.   
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 Number of boundary conditions depends on the order of the 

differential equations in a particular direction involved.  

 

13.2.1 Lateral Boundary Conditions 
 

 The purpose of implementing the lateral boundary 

conditions is to allow the wave or disturbance to propagate 

out of or into the computational domain.   

 

 The lateral boundary values need to be updated with time, 

in reflecting the time-dependent evolution of the real 

atmosphere outside the domain, so that the weather system 

may propagate into the nested domain.   

e.g., simulation of a frontal passage over a finite domain. 

 

 Basically, there are about five types of lateral boundary 

conditions used in mesoscale models:  

(1) Closed or specified boundary conditions,  

(2) Periodic boundary conditions,  

(3) Time-dependent boundary conditions,  

(4) Sponge boundary conditions, and  

(5) Open or radiation boundary conditions. 

 

(1) In the closed or specified lateral boundary conditions, the 

variables at the lateral boundaries are specified as either 

constant values or constant gradients, respectively.   

o The waves or disturbances generated within the 

domain may or may not propagate out of the domain if 

constant values or constant gradients have been 

specified.   
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o Normally, a closed boundary condition tends to reflect 

waves or disturbances generated within the domain 

back into it.   

o Occasionally, it works if the lateral boundaries are far 

away from the generated disturbances or waves at the 

desired integration time, or there are no waves 

propagate toward a particular lateral boundary.   

  

For example, a constant inflow boundary may work if it 
is consistent with the inflow speed of the physical system and 

the generated waves or disturbances are being advected by the 

inflow, so that they never reach the inflow (upstream) boundary.   

  

Mathematically, this type of specified boundary condition is 

called Dirichlet boundary condition. 

 

A constant gradient lateral boundary condition specifies 

a constant gradient, such as zero gradients (e.g., 0/  x

,  is the variable concerned), at the lateral boundaries. 

 

How effective is the constant gradient lateral boundary 

condition to propagate the waves out of the domain 

depends on how close of the specified constant gradients 

to the advection speed of the physical waves.  This is 

also called Neumann boundary condition. 

Numerically, a zero-gradient lateral boundary condition 

specifies   21  and
  1 NN at boundary points i=1 and 

i=N.  

(2) A periodic boundary condition assumes all the variables 

at the right boundary are equal to the left boundary, i.e. 
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)()( 1xxN   . This type of boundary condition is adopted 

by the global model which split a certain longitude 

artificially for making numerical computation. 

(3) A time-dependent lateral boundary condition is often 

adopted when numerical integration are performed 

concurrently at both the inner and outer domains, the 

lateral boundary values of the inner domain need to be 

specified by the updated values predicted by the outer 

domain.  In this way, the weather systems, waves, or 

disturbances are able to propagate into the inner domain.   

 

Otherwise, the simulations of the inner domain cannot 

reflect the larger-scale environmental changes with time.  

This is called the one-way nesting.  In addition, if the 

lateral boundary values of the inner domain are passed 

back to the outer domain, then it is called the two-way 

nesting. 

   

(4) A sponge or wave-absorbing layer boundary condition 

uses an enhanced filtering near the lateral boundaries to 

damp the waves or disturbances generated within the 

domain out of the lateral boundaries.  

  

For example, Perkey and Kreitzberg (1976) formulated 

the sponge region as follows 
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where m  denotes the model calculated tendency of 

variable  and ls denotes the larger scale specified 

tendency and Wi is given as follows: 

  

        Wi   = 0.0 for the (physical) boundaries 

   = 0.4 for the boundaries x  

   = 0.7 for the boundaries x 2  

   = 0.9 for the boundaries x 3  

   = 1.0 for all the interior points. (13.2.2) 

 

  In WRF, the Lateral Boundary Conditions (linear in 

  time) are 

– The wrfbdy file contains later gridded information at 

model points in a zone (e.g.) of 5 points wide around 

the domain  

– The boundary fields are linearly time-interpolated 

from boundary times to the current model time  

– This specifies the outer values, and is used to  

 nudge the next 4 interior points 

 

Israeli and Orzag (1981) examined both viscous and 

Rayleigh-damping absorbing layers for the linearized 

shallow-water system.   

 

Klemp and Lilly (1978) examined the reflection 

produced by a wave-absorbing layer at upper boundary, 

which will be discussed in the upper boundary 

conditions. 

  

(5) Radiation or open boundary conditions 

http://www.mmm.ucar.edu/wrf/users/tutorial/201201/WRF_Overview_Dudhia.ppt.pdf
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For pure gravity waves, the horizontal phase velocity is 

directed in the same sense as the horizontal group 

velocity, such as shown in Eqs. (4.5.14a) and (4.5.15a), 

thus it is possible to use the advection equation to advect 

the wave energy out of the lateral boundaries.  

  

Based on this concept, Orlanski (1976) has proposed the 

open or radiation boundary condition for a hyperbolic 

flow in a numerical model.  For the outflow boundary, 

the radiation boundary condition may be written 
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  at Lx  , (13.2.3) 

 

   where 
*

ocU   is the propagation speed at the outflow 

boundary (x=L), which is to be determined.  The 

leapfrog finite difference representation for time step -1 

of the above equation may be written 
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   Notice that the first term in the bracket of the right  

   hand side is adopted to avoid numerical instability.   

 

Based on the above approximation, the phase speed can 

be estimated by 
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  0*  ocU    if R.H.S. of (13.2.5) <0, 

  
t

x
cU o




 *

 if R.H.S. of (13.2.5) tx  / ,(13.2.5) 

where subscript b denotes the boundary point and R.H.S. 

means the right-hand side.   

 

For a hydrostatic and incompressible fluid system, since 

w is coupled with u, one may use the estimated phase 

speed of u for w.   

 

This may also be applied to the coupled variables of 

potential temperature and pressure.   

 

Once the phase speed is estimated, then the boundary 

value at time step 1 can be determined 
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   (13.2.6) 

where 
*

ocU  is estimated by Eq. (13.2.5).  A similar 

formula can be formed for the inflow boundary. 
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(13.2.7) 

Note that the specification of  at both boundaries will 

lead to an overdetermined problem for the first-order 

advection equation.   

In fact, this renders the problem ill-posed (Oliger and 
moSundstr   1978).  Nevertheless, Davies (1976, 1983) 

has suggested that wave-absorbing layers can have 
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considerable practical utility even when they require 

overspecification of the boundary conditions. 

 

In practice, a zero gradient lateral boundary condition 

has been implemented as   1

1



  NN . 

This type of lateral boundary condition can be viewed as 

a special case of the radiation or open boundary 

condition because the wave propagating out of the right 

boundary is assumed to have a speed of txc  / .  If the 

real physical wave speed is very different from this 

numerical phase speed, then a large reflection from the 

boundary may occur. 
  

 In WRF, the options for lateral boundary conditions 

are: 

Lateral Boundary Condition Options 

a.     Periodic (periodic_x / periodic_y): for idealized cases. 

b.     Open (open_xs, open_xe, open_ys, open_ye): for idealized cases. 

c.     Symmetric (symmetric_xs, symmetric_xe, symmetric_ys, symmetric_ye): for 

idealized cases. 

d.     Specified (specified): for real-data cases. The first row and column are  

specified with external model values (spec_zone = 1, and it should not 

change). The rows and columns in relax_zone have values blended from an 

external model and WRF. The value of relax_zone may be changed, as long 

as spec_bdy_width = spec_zone + relax_zone. This can be used 

with periodic_x in tropical channel simulations. 

  spec_exp: exponential multiplier for the relaxation zone ramp, used with 

a specified boundary condition. 0. = linear ramp, default; 0.33 = ~3*dx exp 

decay factor. This may be useful for long simulations. 

e.     Nested (nested): for real and idealized cases. 

13.2.2 Upper boundary conditions 

 

http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap5.htm
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The upper boundary of a mesoscale or numerical weather prediction 

model should be placed as far as possible from the region with active 

mesoscale waves, convective systems, and weather disturbances.  

 

Ideally, it should be placed at the top of the atmosphere, i.e. p=0.  

However, practically, it is impossible to do so due to the restriction of 

computing resources. 

 

Depends on the weather systems simulated by the model, the top 

boundary of a numerical model domain may be placed at deep within 

the stratosphere, at the tropopause, or within the stable layer of the 

troposphere.   

 

For example, a sea breeze circulation in a stable boundary layer 

normally does not penetrate to a high altitude, thus allows a top 

boundary of a mesoscale model to be placed at the mid-troposphere.   

 

On the other hand, in simulating a flow over a mesoscale mountain, 

the mountain waves often can propagate to a very high altitude.  

Therefore, a much higher vertical domain is needed.   

 

No matter how high the model domain extends in vertical, an 

appropriate upper boundary condition is still needed.   

 

For example, the disturbances or waves generated by a mesoscale 

mountain in the lower stratosphere may look like very weak, the 

energy per unit area associated with them, which is proportional to N 

(e.g. see the vertical energy flux, Eq. (13.2.31) of Lin (2007), at later 

part of this subsection), may be as appreciable as the waves in the 

troposphere, which have much higher amplitudes, due to the strong 

stratification in the stratosphere. 
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 The addition of a sponge layer or wave-absorbing layer to the top of 

the physical domain or layer is a simple way to mimic the 

Sommerfeld (1949) radiation boundary condition in a numerical 

model.    

 

The sponge layer is designed to damp out disturbances generated in 

the physical layer out of the upper boundary.   

 

To elucidate the formulation of a sponge layer, we may consider the 

following steady-state, two-dimensional, linear, hydrostatic, 

nonrotating, Boussinesq flow with Rayleigh friction and Newtonian 

cooling added to the momentum and thermodynamic equations, 

respectively,  
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 The above equations may be obtained from Eqs. (4.5.1)–(4.5.4).   

 

To minimize reflections caused by rapid increases in viscosity, one 

may consider the following function (Klemp and Lilly 1978), which 

gradually increase  from 0 at 1z  to T  at Tz ,  
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To investigate the properties of wave reflection from the wave-

absorbing layer, we may assume a wave-like solution in x direction, 

 

 
ikxe zkzkpzkwzkupwu )],(ˆ),,(ˆ),,(ˆ),,(ˆ[)',',','(   .                   (13.2.13)  

Substituting the above equation into (13.2.8)-(13.2.11) yields  
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The general solutions of the above equations may be written 
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     where  
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are the Scorer parameters for uniform basic flow (U) in the physical 

and sponge layers, respectively.   

The four coefficients in Eq. (13.2.15) can be determined by the upper 

boundary condition, lower boundary condition, and two interface 

conditions at (i.e., w and wz are continuous at z1).   

 

According to Eliassen and Palm Theorem (1960), 1c term represents 

the upward propagation of the wave energy, while 2c  term represents 

the downward propagation of the wave energy.  Thus, the ratio 

 

http://www.rsmas.miami.edu/users/isavelyev/GFD-2/Eliassen-Palm%20Theory.pdf
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1

2

c

c
r  , (13.2.17) 

 

represents the reflectivity produced by the upper viscous layer.  

Notice that r can be obtained after applying the interface conditions at 

1zz   and the boundary condition Tzzatw      0ˆ .   

 

To minimize reflection from the upper boundary, Klemp and Lilly 

(1978) suggest that the depth of the sponge layer should be greater 

than the hydrostatic vertical wavelength (U) of the mesoscale 

disturbance.  

 

 

 

 

 

 

 

 
Fig. 13.8: Reflectivity, from the sponge layer as a function of a nondimensional inverse 

Reynolds number, 1/Re for several nondimensional sponge layer depths (d = 0.5, 1.0, 1.5, and 

2.0).  A value of r=1.0 corresponds to complete reflection from the top boundary of the 

computational domain. The nondimensional numbers are defined as / TRe U k  and 

/)( 1zzd T  , where =2U/N. The viscosity coefficient is defined as 

)]/ln(2/)/ln([sin 11

2  TT , where T  and 1  are the potential temperatures at the 

top and bottom of the sponge layer, respectively. (Adapted after Klemp and Lilly 1978)  

[Lin 2007] 

 

Nonlinear numerical experiments suggest that a sponge layer with a 

depth greater than 1.7 is needed (Lin and Wang 1996, Lin 2007).   

Figure 13.8 shows the reflectivity from the sponge layer as a function 

of the nondimensional inverse Reynolds number, Uk T /Re/1  , 

where k is the horizontal wave number.   
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Numerical experiments performed by Klemp and Lilly (1978) also 

suggest that 6/ 1  T is a better choice to avoid the reflection due to 

the rapid increase of the coefficient of viscosity.   

 

If the physical layer is assumed to be inviscid ( 01  ), one may 

choose 5/2  kUT , where k is the horizontal wave number.  For 

example, we may choose 
1002.0  s T for a basic flow with 

110  ms U  over a bell-shaped mountain with km a 20 .   

 

Fig. 13.9 shows the results from a hydrostatic numerical model 

(panels a and b) using a sponge layer for flow over a bell-shaped 

mountain and compare with those calculated from Long’s (1953) 

nonlinear theory.  A vertical domain of 3.4  is used, in which the 

upper half is the sponge layer.  It can be clearly seen that the 

vertically propagating hydrostatic waves are effectively absorbed by 

the sponge layer. 
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Fig. 13.9: Potential temperature ((a) and (c)) and total horizontal velocity fields ((b) and (d)) 

for a two-dimensional, continuously stratified, uniform flow over a bell-shaped mountain 

predicted at the nondimensional time / 100Ut a   by a hydrostatic numerical model [(a) and 

(b)] and calculated by Long’s steady state hydrostatic solution [(c) and (d)].  The Froude 

number ( /F U Nh ) and hydrostatic parameter (Na/U) associated with the basic flow are 

1.3 and 7.7, respectively.  The dimensional flow and orographic parameters are U = 13 ms-1, 

N = 0.01 s-1, h = 1 km, and a = 10 km.  The vertical coordinate is nondimensionalized by the 

hydrostatic wavelength NU /2  . (After Lin and Wang 1996) [Lin 2007]           (11/5/15) 

 

 

 Radiation Upper Boundary Condition 

 
Since the addition of a sponge layer increases the computational time 

significantly, a direct application of the Sommerfeld (1949) radiation 

condition has been proposed (Klemp and Durran 1983; Bougeault 

1983).  
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To elucidate the numerical radiation boundary condition, we may 

consider the 2D, linear, hydrostatic, Boussinesq equations for a 

uniform basic state in the absence of Coriolis force: 
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Again, we may assume a wave-like solution, 
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oooo e  pwupwu   . (13.2.22) 

 

and substitute it into Eqs. (13.2.18)-(13.2.21) to yield the dispersion 

relation,  
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From the above equation, the horizontal phase speed and the 

horizontal group velocity characterize the horizontal propagation of 

hydrostatic gravity waves, 
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Thus, for each wavenumber pair (k,m), the horizontal propagation 

speeds of the phase lines and energy are the same.   

 

Consequently, the outward propagating wave energy can be 

transmitted through a lateral boundary by numerically advecting 

disturbances out of the boundary based on their horizontal phase 

speed, as proposed by Orlanski (1976) and discussed in Section 4.2.2.   

 

Note that for nonhydrostatic waves, pxc and gxc are not identical, 

however, they are still propagating in the same direction.  Thus, the 

radiation or open lateral boundary condition is still able to advect the 

energy out by a simple advection equation.   

 

In the vertical direction, the situation is completely different.  For 

simplicity, we may assume U = 0.  The phase speed and group 

velocity can be derived, 
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Notice that cpz and cgz have opposite signs, which imply that a 

positive (upward) cpz will introduce downward energy 

propagation.  Thus, we cannot use the advection equation to 

advect the wave energy generated within the domain out of the 

upper boundary, as that adopted by Orlanski (1976) for the radiation 

or open lateral boundary condition.   

 



 

 

 

 

 

 

41 

To identify wave modes with upward energy propagation, we 

consider linear disturbances of the form 

 

  )(),,(ˆ),,( tkxiezktzx   , (13.2.28) 

 

where  may represent any dependent variables, ',',' pwu , or ' .   

Substituting the above equation into the governing equation, 

(13.2.18)-(13.2.21), yields 
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By assuming a positive k, the above equation has the following 

general solution, 

 

 
)//()//(ˆ kUiNzkUiNz BeAew    . (13.2.30) 

 

A similar argument may also be made easily for a negative k.  The 

vertical energy flux (Eliassen and Palm 1960) can then be obtained, 
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where A and B terms represent the upward and downward 

propagation of wave energy, respectively.  Thus, to avoid the 

wave reflection from the top boundary, we require B=0.  Thus, 

for upward propagating waves, we choose 
 

  )//(ˆ kUiNzAew  . (13.2.32) 
 

This implies 
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From the continuity equation and momentum equation, we 

have 
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If both positive and negative k are taken into account, then the 

above two equations lead to 
 

 w
k
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Since the above equation has no frequency dependence, we may 

write the above upper radiation condition in the wave number or 

Fourier space, 
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 where wp ~ and ~ are defined as 
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 Numerical Implementation of the upper radiation boundary 

condition 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13.10: A flow chart for modeling the fluid flow system of (13.2.18) - (13.2.21) and 

implementing the numerical upper radiation boundary condition at the top of computational 

domain.  FFT and FFT-1 denote the Fast Fourier Transform and the inverse Fast Fourier 

Transform.   
 

 The numerical implementation of the upper radiation condition to 

the fluid flow system of Eqs. (13.2.18)-(13.2.21) may be sketched 

by Fig. 13.10. In the implementation procedure, the following five 

steps are taken: 
 

(1) Integrate 
1w upward to Tz based on the continuity equation, 

Eq. (13.2.20). 

(2) Make the Fourier transform of )(1

Tzw 
to obtain )(~ 1

Tzw  .  A 

Fast Fourier Transform (FFT) numerical software may 

accelerate the computation. 

(3) Apply Eq. (13.2.36) to obtain )(~ 1

Tzp 
. 

(4) Make the inverse Fourier transform of )(~ 1

Tzp   to obtain )(1

Tzp   

(5) Integrate hydrostatic equation downward based on the upper 

boundary condition of )(1

Tzp  to obtain )(1 zp  at every height 

level in the domain. 
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Klemp and Durran (1983) demonstrated that the upper radiation 

boundary condition is influenced by the nonlinearity of the fluid 

system.   

 

Although the numerical radiation boundary condition is based more 

solidly on gravity wave theory, other factors, such as nonlinearity, 

nonhydrostaticity, and deep convection (which is not a wave) etc., 

may come into play in a more complicated fluid flow system.  

 

In addition, the flow response is also sensitive to the domain 

height when an upper radiation boundary condition is 

implemented.   

 
Options for upper boundary conditions in WRF 

(Sec. 4.4, A description of ARW v3, NCAR) 

 Absorbing Layer Using Spatial Filtering  

 Implicit Rayleigh Damping for the Vertical Velocity 

 Traditional Rayleigh Damping 

Layer 
 

  

13.2.3 Lower Boundary Conditions 
 

The lower boundary condition for an inviscid flow over a flat 

surface is that the flow near the surface is allowed to flow over it 

freely, which is often referred to as the free-slip lower boundary 

condition.   

 

Since the normal velocity is required to be 0 at a rigid surface, 

the inviscid flow is always tangential to the surface.   

 

http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf
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For an inviscid flow over a mountainous terrain, the free-slip 

lower boundary condition requires the flow to be parallel to the 

surface.   

 

For a two-dimensional flow, this requires 

 

 
dx

dh

u

w
    at z=h(x), (13.2.38) 

 

where h(x) is the mountain profile.   

 

The linear approximation of the above equation, 

 

 
dx

dh
U

dx

dh
uUw  )'('  at z=0,  (13.2.39) 

 

has often been adopted in mountain wave theories.   

 

In deriving the above equation, two nonlinearities have been 

neglected by assuming: (1) Uu ' , and (2) the lower boundary 

condition is applied at z=0, instead of z=h(x).   

 

 For a three-dimensional flow, the linear lower boundary 

condition can also be derived, 
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Eqs. (13.2.39) and (13.2.40) are only valid for linear flow 

over small-amplitude mountains.   
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 In mesoscale numerical models, the inviscid lower boundary 

condition for flow over mountains is implicitly incorporated 

in the terrain-following (sigma) coordinates.   

 

 With the planetary boundary layer considered, the no-slip 

lower boundary condition is should be implemented.  That is,  

 

 0)()()(  ooo zwzvzu , (13.2.41) 

 

 where oz is the roughness length, which is defined as 

 

  ozzkuu /ln)/( *
. (13.2.42) 

 

In (13.4.42), k is a universal constant called the von Karman 

constant (k ~ 0.4 based on measurements) and *u is the friction 

velocity, which can be obtained from the vertical momentum fluxes at 

surface, 

 

    22

* '''' wvwuu  ,    (13.2.43) 

 

 where ''wu and '' wv are the turbulent momentum fluxes.   

 

Measurements indicate that the magnitude of the surface momentum 

flux is of order 
221.0 sm .  Thus, the friction velocity is typically of 

order 
13.0 ms .   

 

 In addition to the specifications of the velocities, we also have to 

specify pressure and potential temperature.   
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The surface pressure may be specified based on hydrostatic balance, 

while the potential temperature may be prescribed as a periodic 

heating function, 

 

 )24/2sin()()( max htzz ooo   , (13.2.44) 

 

where t is the time in hours after sunrise, )( oo z is the potential 

temperature at oz at sunrise, and max the maximum temperature 

attained during the day.   

 

 To permit interactions between ground and the atmosphere, 

calculations of surface heat energy budget are needed.  This is 

included in the parameterization of land surface processes. 

  

 For flow over water surfaces, the air-sea interaction processes need to 

be considered, normally parameterized since most of the processes 

cannot be resolved by the models.   

 

 Basically, the air-sea interactions work as the following. 

 

a. The water influences the atmosphere through sensible and latent 

fluxes, which are related to the sea surface temperature (SST).  

b. The atmosphere influences the water or ocean through the wind 

stress to produce a deepening of the ocean-mixed layer, inducing 

water or ocean currents, and altering the upwelling-downwelling 

pattern. 

 

13.3 Initial Conditions and Data Assimilation 
 

 As mentioned earlier, mathematically the mesoscale modeling or 

numerical weather prediction (NWP) can be viewed as solving an 

initial-boundary value problem in which the governing equations 
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of geophysical fluid system are integrated forward in time in a 

finite domain.   

 

 Therefore, in addition to the boundary conditions as discussed in 

the last section, we must also provide suitable initial conditions for 

the model.   

 
 For idealized numerical simulations, the initial conditions 

may be prescribed by known functions or values.   

 

a. For example, the Advection Model and the Tank Model 

used or developed in the projects use known functions 

as the initial condition. 

 

Another example is that in making the model 

intercomparison for the Mesoscale Alpine Program 

(MAP), the participating numerical models use the 

same single sounding, which provides the vertical wind 

profile and temperature, of the 11 January 1972 

Boulder, Colorado windstorm to initiate the models 

(Doyle et al. 2000).  

 

b. If the Coriolis force is included in the model, then the 

initial basic state should be in geostrophic balance.  

Otherwise, the initial state will be adjusted to reach a 

new balanced state by the model, which might not be 

the desired one. 

 

 For real data mesoscale modeling or numerical weather 

prediction, the observational data must be modified to reduce 

errors and dynamically consistent with the governing 

equations of the model.   
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c. Strictly speaking, the process in producing initial 

conditions may be classified as the following four 

components:  

(i)   quality control,  

(ii)  objective analysis,  

(iii) initialization, and  

(iv) initial guess from a short-range forecast  

       by an NWP model.   

 

These components have been taken to form a 

continuous cycle of data assimilation, often called 

four-dimensional data assimilation (4DDA). 

 

d. A brief review of 4DDA may be found in Lin (2007), 

Kalnay (2003), Daley (1991), Harms et al. (1992) and 

Sashegyi and Madala (1994). 

 

 The necessity of performing the quality control on 

meteorological data was recognized long ago, which is 

especially important when the data are used to initialize a 

NWP model. 

e. Reason for quality control: The errors associated with 

the data may be misrepresented (nonlinear aliasing) 

and amplified by the model.  

  
f. To reduce the errors in the sounding data, the following 

steps of quality control have been taken in numerical 

weather prediction (Gandin 1988):  

 

(a) plausibility check,  

(b) contradiction check,  

(c) gross check, and  

(d) buddy check. 
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In plausibility check, data values cannot possibly occur in 

the real atmosphere or extremely exceed climatological 

mean are rejected.  

 

For example, positive temperatures in Celsius at 300 hPa 

are rejected.  

 

In contradiction check, data values of two or more 

parameters at the same location contradicting to each other 

are removed.   For example, the occurrence of rain in the 

absence of clouds is removed. 

 

In gross check, observations with large deviations from the 

first guess field forecast by an operational model are 

removed.  

 

In buddy check, observations not agreeing with neighboring 

observations are removed. 

  

 Observational data are often not regularly spaced, which 

are not ready for use as initial fields for a mesoscale or 

NWP model because they do not match the model grid 

mesh. In some areas, such as over ocean, observational data 

are sparse.   

 

Therefore, in order to use the observational data as initial 

fields for a mesoscale or NWP model, one needs to 

interpolate or extrapolate the data to fit into the grid mesh 

of the model and to apply some balance relations, such as 

geostrophy and mass continuity, to make the data 

dynamically consistent.   
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This procedure is called objective analysis.   

 
 In an objective analysis, it is desirable to:  

 

(1) Filter out scales of motion that cannot be resolved by the 

model,  

(2) Use a first guess field or background field provided by an 

earlier forecast from the same model, which help avoid the 

extrapolation of observation data in data sparse areas and 

introduce dynamically consistency, and  

(3) Make use of our knowledge of the probable errors associated 

with each observation, which may be weighted based on past 

records of accuracy.   

 

When the maximum information from data sources, including 

the observations, climatological records, space correlation 

among the meteorological variables, etc., are extracted 

statistically, the approach is called optimal interpolation.   

 

This often requires knowledge of the statistical structure of the 

fields of the variables.  The variables may be analyzed 

separately or simultaneously, which is referred to as univariate 

analysis or multivariate analysis, respectively. 

 

 The objective analysis procedure generally does not provide fields 

of mass and motion that are consistent with model dynamics to 

initiate a forecast.   

 

Thus, the use of such objectively analyzed data to initialize an 

NWP model may generate large, spurious inertial-gravity wave 

modes. 
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Theoretically, these inertial-gravity wave modes will be dispersed, 

dissipated or propagate out of the domain due to redistribution of 

mass and wind fields.   

 

However, these modes or noise, as often referred to by NWP 

modelers, cannot be dissipated locally because of the relatively low 

resolution in NWP models.   

 

Therefore, an additional procedure, called initialization, is required 

to force the data after the objective analysis to be dynamically 

consistent with the model dynamics, and to allow the model to 

integrate forward in time with a minimum of noise and maximum 

accuracy of the forecasts.   

 

Historically, a number of initialization techniques have been 

developed and used in mesoscale and NWP models, such as:  

 

(a) damping method,  

(b) static initialization,  

(c) variational method,  

(d) normal mode initialization, and  

(e) dynamic initialization.  

 

Review of these methods can be found in Lin (2007) and 

Haltiner and Williams (1980). 

 
 Damping method  

A simple and straightforward way to reducing the gravity wave 

mode is to dampen or filter the inertial-gravity wave ‘noise’ by 

adding a divergence damping term to the horizontal momentum 

equation (Talagrand 1972). 
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In this way, the local rate of change of the divergence will be 

diffused according to  

 

  ...
1 22 
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 (13.3.1) 

 

This approach in initializing the data is called damping method.   

 

 Static initialization  
Another way to adjust the data at a single time level, usually to 

conform to some dynamical constraints in order to reduce or 

eliminate the generation of inertial-gravity wave ‘noise’ is the 

static initialization.   

 

For example, in an isobaric model, one may  

a. estimate the geopotential field ( from the pressure-height 

data and the geostrophic wind relations,  

b. calculate the streamfunction ( ) from analyzed  fields on 

the isobaric surfaces, and then  

c. compute the rotational wind component from the 

following relationship, 

   

    x  kV , (13.3.2) 

Eq. (13.3.2) may be written as an elliptic function of , which may 

become hyperbolic in some areas.   

 

In order to insure ellipticity in these areas so that the numerical 

method for the elliptic equations will apply, the geopotential fields 

must be altered (Haltiner and Williams 1980).  

 

In addition to this difficulty, the gravitational modes still exist even 

using the balance equation to determine a rotational wind for 

initialization.    
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 Variational method  
Another approach to initializing the data is to adopt the 

variational method, in which one or more of the 

conservation relations are applied to minimize the variance 

of the difference between the observations and the 

objectively analyzed fields.   

 

In performing the variational method, the concept of 

principles of variational calculus is applied (Sasaki, 1970).   

 

For example, the difference may be minimized in a least-

square sense subjected to one or more dynamical 

constraints, such as the balance equation, hydrostatic 

relation, and steady state momentum equation. 

 

The static initialization described above is based on the 

distinction between gravity wave modes with relatively 

high divergence and other meteorological modes of the 

quasi-geostrophic type with small divergence and relatively 

high vorticity.   

 

 Normal mode initialization  
However, in reality the separation between gravity wave 

modes and other meteorological modes is far less clear cut 

in some occasions.  Thus, it has been proposed to keep 

some normal modes if they can be represented by the 

model grid resolution.   



 

 

 

 

 

 

55 

 

Retaining these gravity wave modes are important since 

some severe weather have been found to be induced by 

gravity waves (e.g., Uccellini 1975; Kaplan et al., Koch et 

al. – see Lin 2007 for references).   

 

Unlike applying the balance equation constraint, the normal 

mode initialization produces a divergent component as 

well.   

 

Thus, this type of normal mode initialization makes an 

optimal use of the observed data by adjusting both mass 

and motion fields while achieving dynamical consistency 

through appropriate constraints.   

 

In the linear normal mode initialization the original 

objectively analyzed fields are adjusted to the linearized 

versions of the model equations and the undesirable gravity 

wave modes are removed.   

 

However, the disadvantage of this type of method is that 

nonlinear terms tend to regenerate the high-frequency wave 

modes, and also the curvature in the flow is neglected so 

that the fit with the original data may suffer.  This is 

overcome by taking the nonlinear normal mode 

initialization technique (Machenhauser 1977; Baer 1977).   

 

In the nonlinear normal mode initialization, the tendency of 

the undesirable wave modes, instead of the amplitude, is set 
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to zero.  The nonlinear normal mode initialization may also 

be applied to the vertical direction, too.   

 

Fig. 13.11 shows the time evolution of a height field 

after applying two iterations of the implicit normal mode 

initialization scheme (Temperton 1988).   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13.11: Time evolution of height field after two iterations of the implicit nonlinear 

normal mode initialization scheme (thin curve) and with no initialization (bold curve). 

(After Temperton 1988)  

 

Comparing with the time evolution of the same height 

field with no initialization, the implicit nonlinear normal 

mode initialization appears to be able to remove high-

frequency oscillations.    

 

Dynamic initialization  
Since the normal mode initialization is performed 

separately right after the objective analysis, the initialized 
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fields may no longer fit the observations as closely as 

possible.  Therefore, the dynamic initialization is proposed 

(Miyakoda and Moyer 1968).    
 

The basic idea of dynamic initialization is to let the NWP 

or mesoscale model to do the job by itself because any 

primitive equation models are supposed to inherently 

possess the mechanism for the geostrophic adjustment 

process.   
 

Indeed, the mass and velocity fields do mutually adjust to 

each other toward a quasi-geostrophic state when they are 

executed in an NWP model.   
 

In this way, observations are inserted intermittently or 

continuously over a period of time.  In this type of 

initialization, the model is integrated forward and backward 

about the initial time and let the model adjust itself before 

starting the forecast.   
 

During this process, it may be desirable to use an 

integration scheme with selective damping technique, such 

as the Lax-Wendroff (see Ch. 14) or the Euler-backward 

scheme (e.g., see Haltiner and Williams 1980; Lin 2007).  

For example, the iterative scheme by Okamura (see 

Temperton, 1976) consists of a forward step, then a 

backward step and finally an averaging. 
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Fig. 13.12: Gravity wave activity after normal mode initialization, dynamic 

initialization for five vertical modes of a baroclinic model, and compared to 

that with no initialization.  Note that the gravity wave activity is dramatically 

reduced by dynamic initialization.  (Adapted after Sugi 1986) 

 

Fig. 13.12 shows an example of gravity wave activity after 

normal mode initialization and dynamic initialization for 

five vertical modes of a baroclinic model, and compared 

with that with no initialization (Sugi 1986).  Low gravity 

wave modes (small j in the figure) are dramatically reduced 

by the dynamic initialization.   
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The disadvantages of the dynamic initialization scheme are 

that:  

  

(i) Each iteration requires the equivalent of two 

prognostic steps.  To dampen the gravitational noise 

sufficiently would require much iteration that would 

take considerable computer time,  

(ii) Dynamic initialization is unable to distinguish 

between large-scale gravity wave modes and small-

scale Rossby modes, and  

(iii) Backward integration may not be applicable to some 

irreversible physical processes. 
  

 

 Four-Dimensional Data Assimilation (4DDA) 
 

In 4DDA, the invaluable asynoptic data, such as NEXRAD 

(NEXt Generation RADar) Doppler radar, wind profilers, 

acoustic sounders, high-resolution dropsondes, satellite and 

aircraft, observed at nonstandard time (i.e., not at 00Z and 

12Z) are inserted into an NWP model system, the quality 

control, objective analysis, initialization, and initial guess 

forecast from the same model are combined into the 4DDA 

cycle.   

 

The 4DDA cycle may be carried out in an intermittent or 

continuous fashion. 
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In the intermittent 4DDA, the data are assimilated 

intermittently at specified time intervals. The background or 

first guess fields forecast by the model plays a very important 

role, especially in data sparse regions.   

 

In data rich regions, usually the analysis is dominated by the 

information contained in the observations. The boundary 

conditions of regional NWP are provided by global model 

forecast.   

 

The intermittent 4DDA techniques, such as three-dimensional 

variational data assimilation (3DVAR), are used in most 

present day global and regional operational NWP systems due 

to its computational efficiency.   
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Fig. 13.13 illustrates a 32-km EDAS (Eta Data Analysis 

System, see Parrish et al. 1996; Rogers et al. 1998; see Lin 

2007 for a brief review) data assimilation cycle adopted by 

NCEP’s Eta model by using 3DVAR technique.  

   
 

 

 

 

 

 

 

 

 

 

 

Fig. 13.13: An example of data assimilation cycle adopted by NCEP’s ETA model by using 

3DVAR technique.  (Adapted after Rogers et al. 1998) 

 

Data types used in the 3DVAR of the ETA model are:  

1. rawinsonde mass and wind 

2. pibal (pilot balloon) winds  

3. dropwindsondes  

4. wind profilers  

5. surface land temperature and moisture  

6. oceanic surface data (ships and buoys)  

7. aircraft winds  

8. satellite cloud-drift winds  

9. oceanic TOVS thickness retrievals  

10. GOES and SSM/I precipitable water retrievals  

11. ACARS temperature data, surface winds over land  
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12. VAD winds from NEXRAD  

13. SSM/I oceanic surface winds  

14. tropical cyclone bogus data.   
 

The last five types of data were not included in the OI 

(Optimal Interpolation) technique which was replaced by 

3DVAR in EDAS.  Abbreviations of the data types may be 

found in Parrish et al. (1996) and Rogers et al. (1998).  
 

Some more advanced techniques have been developed by 

using adjoint model in intermittent data assimilation systems 

(e.g. Zou and Kuo 1996; Pu et al. 1997; Huang 1999). 

 

The intermittent updating process is appropriate as long as 

most available data are taken at a fixed time period, which 

may vary from 3 to 12 h in practice.   

 

WRF 3DVAR: 
http://www.mmm.ucar.edu/mm53dvar/docs/3DVARTechDoc.pdf 
 

 Continuous (Dynamic) 4DDA  
However, in order to take advantage of the asynoptic data, 

which come in much more frequent than the synoptic data, 

methods of continuous or dynamic 4DDA are desired.   
 

In these methods, the observational data are essentially 

introduced into the assimilation system at each time step of 

the model integration during the assimilation time period.   
 

Examples of this type of continuous 4DDA are  

http://www.atmos.millersville.edu/~lead/Obs_Data_Assimilation.html
http://www.mmm.ucar.edu/mm53dvar/docs/3DVARTechDoc.pdf
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(1) Nudging (Newtonian) relaxation (Hoke and Anthes 1976; 

Kistler 1974),  

(2) Variational assimilation or 4DVAR (Sasaki 1969; 

Stephens1970; see Daley 1991 for reviews), and  

(3) Kalman-Bucy filtering (Kalman and Bucy 1961; Ghil et al. 

1981).  
 

o Nudging (Newtonian) relaxation method 

In the nudging or Newtonian relaxation method, there is 

preforecast integration period during which the model 

variables are driven toward the observations by adding extra 

forcing terms in the equations.   
 

When the actual initial time is reached, the extra terms are 

dropped from the model equations and the forecast proceeds 

without any forcing.  For example, a forcing term is added to 

the x-momentum equation, 
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The time scale for the relaxation, may depends on the 

variable, and is chosen to slowly increase (decrease) prior to 

(after) the time of the observation to prevent any shocks to the 

model during the assimilation time period.   

 

Nudging has been tested for use with the new generation of 

observing systems, such as dropwindsondes, wind profilers, 

and surface data.   
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Compared to the variational assimilation (4D-VAR) and 

Kalman-Bucy filtering techniques, to be discussed below, the 

nudging or Newtonian relaxation technique is less elegant 

mathematically, but is very practical.   

 

Reference: http://www.mmm.ucar.edu/mm5/documents/mm5-desc-pdf/sec4.pdf 

 

o 4DVAR 
In the variational data assimilation or 4DVAR, one tries to 

create the best possible fit between the model and the 

observational data such that the adjusted initial conditions are 

optimal for use in subsequent model forecasts.   
 

For example, in Fig. 13.14 shows that the value produced 

by the first analysis is A (Sasaki 1969; Stephens 1970).   
 

 

 

Fig. 13.14: A sketch of four-dimensional variational data assimilation (4DVAR).  

(a) The value produced by the first analysis is A, which fits the data well at T-3h 

(denoted by A), but leads to a forecast (solid line) that does not match the 

observations (shaded) well by T = 0 h. The shaded band is the observations.  Note 

that even data collected at the same time do not necessarily agree with each other. 

(b) An iterative approach, i.e. the adjoint method, is taken to adjust the initial 

analysis so that it is optimal for prediction.  (Courtesy of F. H. Carr) 

 

 

Although it fits the data well at T-3h, it leads to a forecast that 

does not match the observations well by T = 0h. The band of 

http://www.mmm.ucar.edu/mm5/documents/mm5-desc-pdf/sec4.pdf
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dots is the observations.  Note that even data collected at the 

same time do not necessarily agree with each other.   
 

One way to resolve the problem is to take the adjoint method 

(Lewis and Derber 1985), as one type of the variational 

4DDA or 4DVAR, in which an iterative approach is used to 

adjust the initial analysis so that it is optimal for prediction.   
 

In other words, the adjusted analysis (Aadj) leads to a model 

trajectory (heavy curve) that produces a better 3-h forecast for 

T = 0 h, even though it may not be the best fit at T-3h.   

  

More detailed information can be found at: 
http://www.ecmwf.int/newsevents/training/rcourse_notes/DATA_ASSIMILAT

ION/ASSIM_CONCEPTS/Assim_concepts11.html 

 

WRFDA: http://www2.mmm.ucar.edu/wrf/users/wrfda/ 

 

o Kalman filtering 
In the Kalman filtering technique (Ghil et al. 1981), the data 

sequentially adjust the assimilated fields as the model is 

integrated forward in time.   

 

The Kalman filter minimizes the analysis error variance not 

only at every time step, but over the entire assimilation period 

in which data are provided.   

 

Through an application of Bayesian ideas in a dynamical 

sense (Kalman 1960; Lorenc 1986), the filter is able to extract 

all useful information from the observational increment or 

http://www.ecmwf.int/newsevents/training/rcourse_notes/DATA_ASSIMILATION/ASSIM_CONCEPTS/Assim_concepts11.html
http://www.ecmwf.int/newsevents/training/rcourse_notes/DATA_ASSIMILATION/ASSIM_CONCEPTS/Assim_concepts11.html
http://www2.mmm.ucar.edu/wrf/users/wrfda/
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residual at each time step, thus allowing observations to be 

discarded as soon as they are assimilated. 

 

One promising simplification of Kalman filtering is 

ensemble Kalman filtering (EnKF) (see Kalnay 2003) or 

http://en.wikipedia.org/wiki/Ensemble_Kalman_filter. 
 

Evaluation of a WRF EnKF against a 3DVAR can be 

found at: 
http://www.image.ucar.edu/pub/WRF_EnsembleFilter.pdf.  
 

In order to involve the standard or nonstandard data to reduce 

or eliminate the spin-up error caused by the lack, at the initial 

time, of the fully developed vertical circulation required to 

support regions of large rainfall rates, one may adopt the 

diabatic or physical normal mode initialization.   

This may improve quantitative precipitation forecasts, 

especially early in the forecast.  Two key issues may be raised 

here:  

(1) Choice of technique and  

(2) Sources of hydrologic/hydrometeor data.   

 

Diabatic heating information in nonlinear normal mode 

initialization may be either from the model estimates or from 

observed rainfall data.  Rainfall data (a 2D field) has been 

used to infer 3D fields of latent heating, moisture and 

divergence by a number of ways:  

 

(a) Static methods (Donner 1988; Turpeinen et al. 1990; 

Kasahara 1992; see Lin 2007), 

http://en.wikipedia.org/wiki/Ensemble_Kalman_filter
http://www.image.ucar.edu/pub/WRF_EnsembleFilter.pdf
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(b) Dynamic methods (Ninomiya and Kurihara, 1987; Carr 

and Baldwin 1991; Krishnamurti et al. 1991), 

(c) Adjusting the convective parameterization scheme to 

match the observed rainfall (Krishnamurti et al. 1991; 

Donner 1988; Puri and Miller 1990),  

(d) Latent heat nudging (Fiorino and Warner, 1981; Wang 

and Warner, 1988; Turpeinen et al. 1990; Jones and 

Macpherson 1997).   
 

A major problem in all of the above techniques is the need 

for accurate vertical distribution of the heating and moistening 

rates.   

 

For example,  

(i) surface rain gauge data not available on hourly basis,  

(ii) rawinsode data is sparse horizontally (may be overcome 

by combining infrared and microwave satellite 

estimates),  

(iii) cloud water and ice data to be deduced from the network 

of Doppler radars are not complete (retrieval techniques 

are critical).  

 

The 4DVAR incorporate observed data into a mesoscale 

model, such as WRFDA, in a dynamically and physically 

consistent manner to derive improved initial conditions.   

 

Through the model precipitation calculation and adjoint 

model, information from the space of the model variables, 

such as wind, temperature, and humidity, can be uniquely 

http://www2.mmm.ucar.edu/wrf/users/wrfda/Tutorials/2012_July/docs/WRFDA_4dvar.pdf
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projected to that of the measured variables (i.e. rainfall rates), 

and back, in a consistent manner. 

 

Some mesoscale or local analysis and prediction systems have 

been proposed, such as RUC/MAPS and LAPS.   

 

The Rapid Update Cycle (RUC; see Benjamin et al. 1991, 

2000) is an operational atmospheric prediction system 

comprising primarily of a numerical forecast model and an 

analysis system to initialize that model.   

 

The Mesoscale Analysis and Prediction System (MAPS) is the 

research counterpart to the RUC. The RUC has been 

developed to serve users needing short-range weather 

forecasts, including those in the US aviation community.  

 

In MAPS, a mesoscale model is employed to make a 3h data 

assimilation in coordinates.  It improves the analysis of 

upper-level frontal structures.  Advances in remote sensing 

from earth- and space-borne systems, expanded in situ 

observation network, and increased low-cost computer 

capability allow an initialization for meso- and convective 

scale models.   

 

LAPS (Local Analysis and Prediction System, see McGinley 

et al., 1992; Albers et al., 1996) uses data from local 

mesonetwork (mesonet) of surface observating systems, 

Doppler radars, satellites, wind and temperature (RASS) 

profilers, as well as aircraft are incorporated every hour into a 

three-dimensional grid covering a 1000km x 1240km area.   
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LAPS has analysis and prediction components.  The 

prediction component is being configured using the SFM 

(modified RAMS), MM5, and ETA model.  Any or all of 

these models, usually being initialized with LAPS analyses, is 

run to provide 0-18 h forecasts.   

 

Many of the data assimilation methods developed for larger 

scale models cannot be applied to the stormscale models.   
 

For example, storm-scale phenomena are highly ageostrophic 

and divergent, so that the constraints between the mass and 

momentum field applied at larger scale (geostrophic and 

thermal wind balances) cannot be applied to the storm scale.   
 

Furthermore, the mass field is inferred from the reflectivity 

and radial velocity measured by Doppler radars, instead of 

being measured directly.  Thus, the retrieval techniques 

become very critical.   
 

As shown in Fig. 13.15, the adjoint method can improve the 

accuracy in retrieving the thermodynamic fields, compared to 

the direct integration of the continuity equation (Sun and 

Crook 1996).   
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Fig. 13.15: Vertical velocity field from (a) control run, (b) vertical integration of the 

continuity equation, and (c) adjoint retrieval. (After Sun and Crook 1996) 

 

13.4 Nonlinear Aliasing and Instability, and Numerical 

Smoothing 

 

In discussing numerical instabilities in the previous chapter, we 

have neglected the nonlinear effects.   

 

However, in the real atmosphere, kinetic energy generated at 

large scale or mesoscale tends to transfer to smaller scales.   

 

When it is transferred to the so-called inertial subrange, the 

kinetic energy is neither produced nor dissipated, but handed 

down to smaller and smaller scales.   
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  (From Tennekes and Lumley 1972) 

           ( : wavenumber, E(): energy) 

 

(2) In the energy-containing range (Range A), which 

contains the bulk of the turbulenct energy and where 

energy is produced by buoyancy and shear. 

 

(3) In the inertial subrange (Range B), the kinetic energy is 

independent of original forcing of the motion and 

molecular dissipation, according to E(k)=a2/3 k-5/3 , 
 

where a is a constant,  is the eddy dissipation rate, and k 

is the wave number.   
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In this range, energy is neither produced nor dissipated 

but handed down (transferred) to smaller and smaller 

scales. 

 

(4) In the dissipation range (Range C), where KE is 

converted to internal energy by molecular interaction.  

 

 

In a numerical mesoscale model, this cascade of energy to 

smaller scales cannot occur because the smallest feature that can 

be resolved has a wavelength of 2x.   

 

For example, let us consider 2 waves with the same amplitude o 

and different wave numbers, k1 and k2,   

 

 xko  11 cos ,   (13.4.1) 

 xko  22 cos .  

 

A nonlinear interaction between these two waves produces 

 

     xkkxkko  2121

2

21 coscos)2/( . (13.4.2) 

 

For example, this may happen in the momentum equation,  

 

 
2' ' ' 1

' ( ' )
2

u u u
U u U u

x x x x

   
  

   
. 

It can be seen clearly from the above equation, two waves with 

wave numbers, 21 kk  and 21 kk  are resulted from this wave-

wave interaction.   
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Assume k1 and k2 represent the following x2  and x4 waves,  

 

 )2/(21 xk   ,  

 2 2 /(4 )k x  , (13.4.3) 

 

then we have 
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The second term inside the braces of the right hand side of the 

above equation is a x4  wave, which can be appropriately 

represented by the grid mesh.   

 

However, the first term is a x33.1 wave, which cannot be 

resolved by the grid mesh.  This wave will be fictitiously 

represented by a x4  wave because the first integer multiple of 
3/4 x  is x4 .   

 

This phenomenon is called nonlinear aliasing.   
 

Fig. 13.16 shows a schematic that illustrates of how a physical 

solution with a wavelength of 3/4 x , caused by the nonlinear 

interaction of x2  and x4  waves, is seen as a computational 
x4  wave in the numerical grid mesh.   
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Fig. 13.16: Schematic illustration of nonlinear aliasing.  A physical solution with a 

wavelength of x33.1 , caused by the nonlinear interaction of waves of x2  and x4 , is 

seen as a x4 wave in a numerical grid mesh. (After Pielke 2002, reproduced with 

permission from Elsvier.) (From Lin 2007) 

 

In the real world, we have the large-scale disturbance generated 

by forcing, which then cascades to a mesoscale disturbance, 

small-scale disturbance, and then dissipates at an even smaller 

scale.   

 

However, it does not seem to happen in the same way in the 

numerical model, in which waves with wavelength shorter than 
x2 will be represented as larger scale waves.   

 

Therefore, even if a numerical method is linearly stable, the 

results can degrade into computational noise.   

 

This erroneous accumulation of energy can cause the model 

dependent variables to increase in magnitude abruptly without 

bound.  This phenomenon is called nonlinear computational 

instability. 
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There are two methods have been proposed to avoid the 

nonlinear instability:  

 

(a) proper parameterization of the subgrid-scale correction 

terms, such as ''wu , '' wv , ''w , etc., so that energy is extracted 

from the averaged equations, or  

 

(b) use of a spatial smoother or filter to remove the shorter 

waves, but leaves the longer waves relatively unaffected.   

 

The first approach is better than the second one because it is 

based on physical principle.  However, it requires a good 

knowledge about the subgrid-scale correlation terms.   

 

The second approach can be accomplished in a relatively easier 

manner, such as those proposed by Shapiro (1970; 1975).   

 

To understand numerical smoothing, we may consider a simple 

one-dimensional, three-point operator, 

 

 ))(2/()1( 11   jjjj ss  , (13.4.5) 

 

where xjx   and s is a constant which may be negative.   

 

If this operator is applied to the harmonic form of a wave 

 

 ikxeA  , (13.4.6) 
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where the wave number Lk /2  and A is a constant which may 

be a complex, then the result may be written as 

 

   R ,   

  LxsxksR /sin21)cos1(1 2   .                                (13.4.7) 

 

In the above equation, R is referred to as the response function.   

 

(5) If 0R , then the wave number and phase are not 

affected, but only the wave amplitude.  

(6) If 1R , then the wave is amplified by the operator.   

(7) If 1R , then the wave is damped by the operator.   

(8) If 0R , then the phase of the wave is shifted by 180o, 

which is undesirable.   

(9) With 2/1s , we obtain the second-order smoother, 

 

  )2)(4/1( 11   jjjj  , (13.4.8) 

 

 and 

 

 )/(cos)cos1)(2/1(1)2/1( 2 LxxkR   . (13.4.9) 

 

From above, if xL  2 , then 0R .  Hence, for a x2 wave, the 

smoother will eliminate it immediately.   

 

Since a three-point smoother damps the shorter waves too 

strongly, it is less desirable.   
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A five-point smoother can be obtained by applying 2 successive 

three-point smoother with 2/1s and 2/1 , 

 

 
    
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jjjjjj

    



 (13.4.10)  

The above smoother will also remove the x2 wave immediately, 

but preserve more of the longer waves.   

 

In fact, the above 5-point smoother is analogous to the finite 

difference form of the 4th-order diffusion equation, 

 

 0
4

4











x
c

t


, (13.4.11) 

 

which has a finite difference form, 

 

  )()(46 2211
1   
  jjjjjjj , (13.4.12) 

 

where 4/ xtc  .    

 

If we choose 16/1 , then the above equation is analogous to 

(13.4.10).   

 

Thus, in applying the 5-point smoother, it has a similar effect as 

the 4th-order diffusion.  That is why numerical smoothing has 

also been referred to as numerical diffusion.    
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In order to retain the amplitude of longer waves, the coefficient 

1/16 in (13.4.10) or  is often reduced.  Testing is needed to find 

out the most appropriate coefficient of the numerical smoothing 

or diffusion.   

 

In practice, the smoothing is not applied to the boundary points.   

 

For the grid points adjacent to the boundaries, we may need to 

apply the three-point smoother or second-order diffusion, which 

has a form of 

 

   112 2   jjjjj  . (13.4.13) 

 
In order to make (13.4.13) consistent with (13.4.12), we require  

 

 12 4  . (13.4.14) 

 

Note that the leapfrog scheme produces a computational mode with 2t 

wave.   

 

To suppress this, we may apply the time smoother (Robert, 1966; 

Asselin, 1972) 

 

 
  )/(2

11 tt 


, (13.4.15) 

 

where 

 

  2111

2





 . (13.4.16) 

 

Based on numerical testing, a choice of < 0.25 is preferable. 
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13.5 Modeling a Stratified Fluid System 
  

To elucidate how to model a stratified fluid flow system, we 

may consider the nonlinear, hydrostatic, incompressible flow 

system similar to that governed by Eqs. (2.2.12) - (2.2.16) with 

0V , 
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where  

'q : the diabatic heating rate in 1kg J  (surface and/or 

elevated heating),  
 : is the molecular kinematic viscosity coefficient,  

 : is the molecular thermal diffusivity coefficient, and the  

    Brunt-Vaisala frequency N is defined as )/)(/(2 dzdgN  .   

 

The basic state is assumed to be in geostrophic and hydrostatic 

balances.   
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The basic and perturbation quantities have been separated in the 

above system, which allows one to examine the nonlinear effects 

by comparing with the corresponding linear simulation.   

 

Note that the above system has included molecular viscosity and 

diffusivity, which play insignificant roles in the atmosphere 

except in the viscous sublayer.  

 

However, they can be used to implement the sponge layer on top 

of the physical domain to mimic the upper radiation boundary 

condition.   

 

Rayleigh friction and Newtonian cooling have also been adopted 

to mimic the sponge layer.   

The planetary boundary layer processes are normally 

parameterized by eddy viscosity and diffusion. 

  

To elucidate how to simulate the nonlinear system of (13.5.1)-

(13.5.5), we may consider apply the scheme of leapfrog in time 

and second-order centered in space to the prognostic equations 

to obtain 1u , 1v  and 
1 from other variables at time steps   

and 1 , based on (13.5.1), (13.5.2) and (13.5.5), respectively.   

 

The vertical velocity 1w  can then be obtained by integrating the 

continuity equation, (13.5.4) upward.   

 

The upper boundary condition can be approximated by a sponge 

layer with  increasing from the top of the physical domain to 
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the top of the model domain, or following the flow chart Fig. 

13.10 to apply the upper radiation boundary condition 

numerically.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13.10: A flow chart for modeling the fluid flow system of (13.2.18) - (13.2.21) and 

implementing the numerical upper radiation boundary condition at the top of 

computational domain.  FFT and FFT-1 denote the Fast Fourier Transform and the inverse 

Fast Fourier Transform.   

 

 

Following Fig. 13.10, we can obtain 1p  by integrating the 

hydrostatic equation (13.5.3) downward.   

 

In this way, all variables at time step +1 are then obtained 

numerically.  More sophisticated numerical schemes may be 

chosen to simulate the above system. 

   

In some mesoscale models, the hydrostatic assumption is 

relaxed to more properly simulating deep convection and effects 

of steep topography.  A set of fully compressible fluid system 

may be written as, 
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 )61.01( vv qTT  , (13.5.14) 

 

where  

vT  is called virtual temperature,  

   is the virtual potential temperature (with subscript v 

dropped),  

op
 is the basic state pressure at the ground, usually taken as 1000 

hPa,  

S  is any source or sink of  , such as surface long-wave 

radiation and elevated latent heating,  

S
 is any source or sink of the hydrometeor  , such as water 

vapor (qv), cloud water (qc) , rain (qr), cloud ice (qi), snow (qs), 

graupel/hail (qg).   
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The virtual temperature is the temperature a dry air parcel would have if 

its pressure and density were equal to those of a given sample of moist 

air.   

 

The virtual temperature is a fictitious temperature of a moist air parcel 

that satisfies the equation of state for dry air.   

 

As mentioned above, terms with   and  in the above equations 

represent molecular viscosity and thermal diffusion effects, which play 

insignificant role in atmospheric motions and processes except in the 

viscous sublayer.   

 

The viscous sublayer only occupies a few centimeters above the earth’s 

surface, thus is often ignored in mesoscale models.   

 

As will be discussed in the next chapter, the subgrid turbulent flux terms 

will come into play when the unresolved subgrid turbulent mixing is 

considered.   

 

The above equations may also be represented in terms of the Exner 

funtion, to be defined below.   

 

Following Tapp and White (1976) and Klemp and Wilhelmson (1978), 

the governing equations of a fully compressible fluid system may be 

derived.   

 

Including the moisture, the equation of state may be written in the form, 

 

 vdTRp  , (13.5.15) 

where vq is the mixing ratio of water vapor.   

 

In order to avoid an explicit treatment of the density, an Exner function 

has been adopted in some mesoscale and cloud-scale models, 
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The pressure gradient force terms can then be approximately represented 

by 
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where  

 

vo is the initial undisturbed state v and a function of z only, defined as 

1vvov   .  

 

The Exner function may be partitioned into 1  o ,  

where o  is the initial basic state and 1  is the perturbation from the 

initial state o .   

 

The initial basic state is assumed to be in geostrophic balance in 

horizontal and hydrostatic balance in vertical, 
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The advantages of using  instead of p are that (Pielke 2002):  

 

(a)    is not treated explicitly in the governing equations,  
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(b)     does not present in the buoyancy term even if the vertical scale of 

the motion or disturbance Lz is equivalent to the scale height H;  

(c)  There is no need to compute the density perturbation;  

(d)  Less truncation error is introduced since zo  /  is much less than 

zpo  / .   

 

One disadvantage of using the Exner function is that the anelastic 

equation for  is much more complicated, such as that used in Clark 

(1977), and need a Poisson equation solver.   

 

In the terrain-following coordinates, coding of the Poisson equation 

solver becomes very complicated (Chen 1991; Huang 2000).   

 

Thus, the momentum equations can then be derived by using the Exner 

function and approximating v  by vo in pressure gradient forces, we 

have 

 

 ,)( 21 u
x

vvf
Dt

Du
vog 



 


  (13.5.20) 

 ,)( 21 v
y

uuf
Dt

Dv
vog 



 


  (13.5.21) 

 
, 211 wqg

zDt

Dw
H

vo

v
vo 













 






   (13.5.22) 

 gsricH qqqqqq    

 

where 

  
zwyvxutDtD  ///// , subscripts o and 1 denotes the 

initial basic state and perturbation of a variable, respectively, and 

gsric qqqqq  and  ,  ,  ,  , denote the mixing ratios of cloud water, cloud ice, 

rainwater, snow, and graupel/hail, respectively.   
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The pressure equation can be written as 
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where DtD /   represents the diabatic heating per unit mass (
1kg J ).   

 

The thermodynamic equation and equations governing hydrometeors 

may be written as 
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where S terms denote the source and sink of the variable, which 

represent microphysical processes.   

 

The advantage of using the fully-compressible fluid system of (13.5.20)-

(13.5.25) is that every equation can be integrated alone numerically to 

obtain its own value at the next time step, without having to couple with 

other equations, such as the hydrostatic, incompressible fluid system of 

(13.5.1)-(13.5.5).   

 

However, this set of equations contains sound waves, which propagate 

at much larger speeds than the gravity waves and require a very small 

time step to insure the numerical stability.   

 

In practice, it is almost impossible to adopt such a small time step, even 

at the research mode of numerical simulations.   
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In order to improve numerical efficiency of the above atmospheric fluid 

system, Klemp and Wilhelmson (1978) proposed a time-splitting 

scheme, which was originally proposed by Marchuk (1974).   

 

In the time-splitting scheme, equations with no sound wave modes, i.e. 

(13.5.24) and (13.5.25), embedded are marched with a large time step, 

t , while equations with sound waves embedded, i.e. (13.5.20)-

(13.5.23), are integrated with a small time step   from time t t to 

t t  .   

 

To insure numerical stability, a semi-implicit method have been used in 

vertical for the small-time-step integration.   

 

Browning and Kreiss (1994) argued that the Klemp-Wilhelmson splitting 

scheme is weakly unstable for symmetric hyperbolic systems and it is 

necessary to add an ad hoc dissipation operator to control the instability.   

 

They also suggested that for badly skewed systems, Klemp-Wilhelmson 

splitting scheme, in which semi-implicit method is applied in vertical, 

also excites high-frequency waves.   

 

Therefore, they proposed the leapfrog method for the multiscale system 

for the atmospheric modeling (Browning and Kreiss 1986).   

 

On the other hand, Skamarock and Klemp (1994) showed that the 

Klemp-Wilhelmson time splitting scheme is efficient and reasonably 

accurate as compared to other models using a single small time step to 

integrate the fully compressible fluid system.  

  

Based on scale analysis, Ogura and Philips (1962) found that the only 

important term in (13.5.23)  
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for representing convection is the second term on the right hand side, 

which may be approximated by the anelastic continuity equation, 

 

   0 Vo . (13.5.26) 

 

Taking the time derivative of the above equation and using the 

momentum equations yields an elliptic equation, the above equation may 

be rewritten 
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where the source terms include acceleration terms (e.g. see Huang 

2000).   

 

As discussed in Chapter 2, the anelastic approximation may be further 

improved by adopting the pseudo-incompressible approximation 

(Durran 1989).   

 

One of the disadvantages in adopting the anelastic approximation is that 

(13.5.27) becomes very complicated when it is transformed into a 

terrain-following coordinates, which also makes the computations 

expensive. 
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13.6 Predictability and Ensemble Forecasting 
  

Basically, numerical weather prediction uses numerical methods 

to approximate a set of partially differential equations, which 

govern the weather systems, on discrete grid points in a finite 

domain to predict the weather systems and processes for a 

certain time in the future.   

 

In order to numerically integrate these partial differential 

equations with time, one needs to start the integration at certain 

time for the finite domain.   

 

As mentioned earlier, mathematically this corresponds to 

solving an initial-value and boundary-value problem.   

 

Thus, in a numerical weather prediction model, the 

meteorological variables need to be specified at the initial time, 

i.e. the initial conditions, and at the boundaries of the domain, 

i.e. boundary conditions.   

 

In earlier part of this Chapter, we have discussed about various 

ways in implementing the initial and boundary conditions for a 

mesoscale model, which are also applicable to a numerical 

weather prediction model.    

 

The accuracy of a numerical weather prediction model thus 

depends on the accuracies of the initial conditions and boundary 

conditions.   
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The major problems we are facing in the numerical weather 

prediction today is the lack of sufficient and accurate initial 

conditions, as well as more accurate and sufficient boundary 

conditions and appropriate ways to implement them at the lateral 

boundaries of a finite domain of interest.   

 

One example is that we do not have enough observed data in the 

upper air, over the ocean and polar regions.  Some 

unconventional data, such as those retrieved from radar and 

satellite observations, have been used to help supply the data in 

data-void regions.   
 

Improvement of global numerical weather prediction models is 

also important in improving the accuracy of the regional 

numerical weather prediction model since the former are often 

used to provide the initial and boundary conditions for the latter.   
 

The inaccuracy of numerical weather prediction may also come 

from the numerical approximation of the partial differential 

equations governing atmospheric motions on the discrete points 

of a model domain, and the representation of the weather 

phenomena and processes occurred within grid points of a 

numerical model, i.e. the parameterization of subgrid-scale 

weather phenomena and processes.   
 

The accuracy of a numerical method can be improved by  
 

(1) adopting a higher-order approximation of the partial 

differential equations used in the numerical weather 

prediction models, as well as  
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(2) using a more accurate, but stable approximation 

methods.   

 

These require an increase of computing power as well as a better 

understanding of numerical approximation methods.   

 

The accuracy of subgrid-scale parameterizations can be 

improved by  

 

(1) reducing the grid interval of a numerical weather   

prediction model, as well as  

(2) a better understanding of the weather phenomena and 

processes, which will be discussed in the next Chapter.   

 

Another challenge of numerical weather prediction is whether 

the weather systems are predictable or not.   

 

If they are intrinsically unpredictable, then the improvements in 

more accurate initial and boundary conditions, numerical 

methods, and subgrid-scale parameterizations of a numerical 

weather prediction will have their limitations.   

 

In reality, the weather systems are considered to have limited 

predictability.   

 

Thus, it leaves us some room to make improvements of the 

accuracy of numerical weather prediction models.   
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13.6.1 Predictability problem  

 

In 1919, Bjerknes stated that  

 
“if the initial conditions of the atmosphere were known with 

sufficient accuracy, and if the equations by which the motions of 

the atmosphere and the physical changes taking place therein 

were also known with sufficient accuracy, then the state of the 

atmosphere could be determined completely by some super-

mathematician at any subsequent time.”      (Quoted in Schumann 

1950)  

 

Schumann is one of the earliest that concerned about the 

uncertainties in the subjective forecasts.   

 

In early 1950s, some meteorologists started to apply 

statistical methods to weather prediction to cope with the 

uncertainties encountered in forecasting (Gleeson 1961).  

The weather forecasting problem has been viewed as 

evolving probabilities.   

 

It has been realized that even with improved model 

techniques, the weather prediction has its own inherit 

limitations due to the inevitable model deficiencies and 

errors in the initial conditions, or the predictability 

problem.   

 

In his pioneering work of dynamical system, Lorenz (1963) 

discovered some fundamental aspects of atmospheric 

predictability.   
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He demonstrated that the atmosphere, like any dynamical 

system with instabilities, has an inherit time limit of 

predictability.    

 

Based on the convective equations of Saltzman's (1962), 

Lorentz found that two complete different solutions were 

predicted by the same model with slightly different initial 

conditions.   

 

 

 

 

 

 

 

 

 

 

 
                     (From Lorenz JAS 1963) 

http://journals.ametsoc.org/doi/pdf/10.1175/1520-0469%281962%29019%3C0329%3AFAFCAA%3E2.0.CO%3B2
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He later found that errors of different spatial scales grow at 

different rates (Lorenz 1969a).  On average, the fastest 

error growth occurs at small scales.     

 

In an early predictability experiment with a general 

circulation model, Charney et al. (1966) found that the 

doubling time of root-mean-square (rms) temperature errors 

to be about 5 days.   

 

This leads to an estimate of 3 weeks as the ultimate limit to 

atmospheric predictability and encouraged the planning 

and execution of the Global Atmospheric Research 
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Program (GARP) and the First GARP Global Experiment 

(FGGE) (Anthes 1986).   

 

Lorenz (1969a) calculated that the average limit to 

atmospheric predictability at planetary scales is on the 

order of 10 days.   

 

Using the European Centre for Medium Range Weather 

Forecast (ECMWF) operational model, Lorenz (1984) 

estimated upper and lower bounds to the predictability of 

500 mb heights.   

 

Predictability studies of large-scale motions indicate that 

predictability varies with horizontal scale, seasons, latitude, 

and synoptic pattern.   

 

On the average, differences in the initial conditions of 

global numerical weather prediction models double in 

about 2 to 5 days, leading to estimates of the limits to 

atmospheric predictability of about 2 weeks.   

 

This growth of initial differences or errors is a consequence 

of the nonlinear transfer of energy among different scales 

of motion and the presence of atmospheric instabilities.   

 

A study of mesoscale predictability by Anthes (1986) 

indicated that, in at least some cases, small errors or 

differences in the initial conditions do not grow over a 72 

hour period when the lateral boundary conditions are kept 

same.   
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These results might imply that improved meso- scale or 

regional-scale numerical weather predictions are possible in 

the 72 hour period, provided that large-scale conditions are 

well forecast and that realistic surface forcing and physical 

parameterizations are included in high-resolution models.   

 

Considerable efforts are needed to verify these results in 

future studies, especially in considering the resolution of 

the numerical weather prediction model is getting smaller 

and smaller, and data from local mesonetworks have been 

integrated into a very high-resolution gridded framework 

(e.g. Local Area Analysis and Prediction System - LAPS, 

see Albers et al. 1996).                                             (4/26/12) 

 

 

13.6.2  Ensemble Forecast 

 

An ensemble forecast is a collection of two or more forecasts 

that verify at the same time, which start from different initial 

conditions and/or are based on different forecasting procedures.   

 

The various forecasts all represent possibilities given the 

uncertainties associated with forecasting.   

 

From these possibilities, one can estimate probabilities of 

various events as well as an averaged or consensus forecast.   

 

An ensemble of forecasts can be used to (Sivillo et al. 1997):  

 

http://www.hpc.ncep.noaa.gov/ensembletraining/
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(a) Composite into a single forecast by means of a weighted 

average,  

(b) Suggest possibilities whose probabilities can be estimated 

(e.g., probability of precipitation (PoP); how to make 

PoP?), 

(c) Estimate the reliability of the composite forecast, and  

(d) Suggest where additional special observations might be 

targeted to improve forecast accuracy.   

 

Current ensemble forecasting at both NCEP and ECMWF is 

focused on the consequences of initial value errors.  Both 

centers are generating an ensemble of forecasts by starting a 

forecast model from a variety of initial conditions.   

 

Krishnamurti et al. (2001) showed that a real-time multianalysis-

multimodel superensemble forecasts made a significant 

improvement in rainfall forecasts.   

 

As indicated in Fig. 13.17, during the training period, the 

observed fields provide statistics that are then passed on to the 

area on the right, where 0t .  

 

http://www.srh.noaa.gov/ffc/?n=pop
http://www.metoffice.gov.uk/news/in-depth/science-behind-probability-of-precipitation
http://www.metoffice.gov.uk/news/in-depth/science-behind-probability-of-precipitation
http://rain.atmos.colostate.edu/research/pubs/krishnamurti2001.pdf
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Fig. 13.17: A flow chart of multianalysis-multimodel superensemble forecasting.  The 

vertical line in the center denotes the initial time ( 0t ), and the area to the left denotes 

the training period where a large number of forecast experiments are carried out by the 

multianalysis-multimodel system.  During the training period, the observed fields provide 

statistics that are then passed on to the period on the right, where 0t .  Here the 

multianalysis-mulimodel forecasts along with the statistics provide the superensemble 

forecasts. (Adapted after Krishnamurti et al. 2001)  

 

The multianalysis-multimodel forecasts along with the 

aforementioned statistics provide the superensemble forecasts.   

 

The superensemble has a higher skill compared to that of the 

ensemble mean because the superensemble is selective in 

assigning weights and the past history of performance of models 

from the past statistics. 
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