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Chapter 14 Parameterizations of physical processes  

14.1 Reynolds averaging 

 In the previous two chapters, we have described numerical methods for 

approximating the primitive equations and the setup for numerical models, such as grid 

systems, and initial and boundary conditions.  As demonstrated in Section 13.5, a 

mesoscale model may be developed to simulate a simple geophysical fluid system, such 

as a stratified, inviscid flow over topography.  However, in order to apply this type of 

geophysical fluid dynamics model to simulate mesoscale atmospheric phenomena, some 

important physical processes, such as boundary layer processes, moist processes, and 

radiative transfer processes, need to be represented or parameterized in the model.    

 In order to numerically integrate the governing differential equations in a limited 

area, a numerical method, such as a finite difference method, spectral method or finite 

element method, must be used to approximately represent the atmospheric motion and 

processes by the dependent variables at grid points or elements.  The approximations 

limit the explicit representation of atmospheric motions and processes to a scale smaller 

than that for the grid interval, truncated wavelength, or finite element.  For example, 

large-scale disturbances may cascade down to mesoscale, then further down to the 

smallest turbulent eddies responsible for viscous dissipation in the atmosphere. If the 

subgrid-scale disturbances are not appropriately represented by the grid point values, 

they may cause nonlinear aliasing and nonlinear numerical instability, as discussed in 

Chapter 13.  An obvious way to resolve the problem is to provide sufficient resolution in 

a numerical model, so that the model can explicitly simulate any significant small-scale 

motions and processes. For example, direct numerical simulation (DNS) has been 
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developed to numerically simulate turbulent motions by fluid dynamicists, in which the 

time-dependent Navier-Stokes equations with explicit terms for molecular diffusion are 

integrated numerically to obtain the solution, without making any turbulence 

parameterizations.  The finest scales of the simulation are determined by the balance 

between nonlinear advection and viscous diffusion, i.e. the Reynolds number (Re = UL/ν, 

where U and L are the characteristic velocity and length scales, respectively, and ν the 

kinematic viscosity coefficient) of the flow.  A typical value of kinematic viscosity for 

the air in the lower atmosphere is 5 2 11.5x10 m s− − . When Re>>1, changes in motion by 

advection are much more important than the dissipation due to molecular viscosity.  In 

this type of turbulent flow, a turbulent Reynolds number is more appropriately used to 

describe the characteristic of the flow, in which the kinematic viscosity coefficient is 

replaced by the turbulent exchange coefficient.  Boundary layers encountered in 

engineering practice have a fairly large Reynolds numbers ranging from 63 10  to10 , while 

the atmospheric boundary layers developing over most natural surfaces are characterized 

by even larger Reynolds numbers ( 96 10  to10 ).  The higher Reynolds number flows have 

also been observed in the free atmosphere, such as within cumulus cloud and in wave 

breaking regions.   

 DNS requires the whole range of spatial and temporal scales of the turbulence to be 

resolved by the grid interval ( xΔ ), from the smallest dissipative scale ( Lε ), where Lε  is 

approximately equal to 3 1/ 4( / )ν ε  and ε  is the kinetic energy dissipation.  To satisfy 

these conditions, the number of grid intervals N in the grid direction must satisfy 

N x LΔ >  and x LεΔ < , where L is the integral scale. Since 3 /U Lε ≈ , a three-
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dimensional DNS will require a number of grid intervals 3 9 / 4N Re≥ . Thus, the 

computational cost for DNS is extremely high.  With current computing power, it is 

unrealistic to apply DNS to mesoscale atmospheric modeling. On the other hand, even 

when the needed computing power is available; we still have to be careful in using the 

detailed information about small-scale turbulent motions and processes with sizes that 

cannot be resolved by available observational systems. Since these processes are not well 

understood at the present time, the governing equations of fluid motion cannot describe 

them accurately.   

 The second approach is to numerically integrate the Reynolds-averaged Navier-

Stokes (RANS) equations of the mean motion. The ensemble properties of all time 

fluctuations in a turbulent flow are described by a turbulence closure.  In this approach, 

the subgrid-scale motions and processes are parameterized. The parameterization 

approach gives a less detailed representation than the explicit representation (DNS), but it 

is more practical in terms of computing cost and may be sufficiently accurate for many 

mesoscale models since it considers grid interval and initial data, among other factors.   

 A third approach in numerically simulating turbulent flows is to simulate large 

turbulent eddies explicitly, while the unresolved subgrid scale motions associated with 

smaller turbulent eddies are either ignored or parameterized. In this type of large-eddy 

simulations (LES), the large turbulent eddies explicitly simulated by the numerical model 

fall in the range of the grid size to the domain size of the model.  Although the LES of 

turbulent flows and neutral and unstable planetary boundary layer (PBL) flows have 

been demonstrated to be very encouraging, the simulations of the nocturnal boundary 

layer are less successful due to the fact that the characteristic large-eddy scale becomes 
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too small, and that most of the energy transfer and other exchange processes are overly 

influenced or dominated by subgrid scale motions. Although the LES derive their 

credibility from the explicit resolution of large-scale turbulent eddies, they depend upon a 

small-scale turbulence closure and must, to some degree, inherit the many uncertainties 

associated with turbulence closure (Mason 1994).  Most LES results obtained so far are 

very encouraging, however, there is still room for improvements to overcome certain 

limiations. Some improvements include (a) the quality of the simulation can depend 

sensitively on subgrid modeling, which is not fully developed; and (b) LES requires high 

numerical accuracy, and does not in particular tolerate numerical dissipation which is 

often adopted in mesoscale models. To take advantage of both the LES and RANS, a 

hybrid LES-RANS approach has been developed and applied, in particular, to 

engineering problems.   

 Unresolved turbulent eddies of various scales smaller than the grid interval often 

fluctuate rapidly in time, thus limiting the description of their behavior to statistical 

approaches.  The use of statistical approaches requires the introduction of an averaging 

operator.  Any averaging operator used in atmospheric modeling should be able to 

satisfy the following criteria (Cotton 1986): (a) The operator should provide a formal 

mechanism for distinguishing between resolvable and unresolvable eddies; (b) The 

operator should produce a set of equations more amenable to integration, either 

analytically or numerically, than the original system of equations; and (c) The averaged 

set of atmospheric variables should be measurable by current or anticipated atmospheric 

sensing systems.  Following the scheme originally developed by Reynolds (1895), each 

model variable is decomposed into a slow-varying mean field part and a rapid-varying 
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turbulent part, such as 'u u u= + , 'v v v= + , 'w w w= + , 'θ θ θ= + , 'p p p= + , and 

'ρ ρ ρ= + . Some useful formulas for the Reynolds averaging can be derived, for 

example, 

 wuwu +=+ ; wccw = ;   ww = ; 0' =w ;  

 0 '' == θθ ww ; ''  )')('( θθθθθ wwwww +=++=  ; '' wuwuuw += ; 
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where c is a constant, ''wu and ''θw  are the vertical turbulent flux of zonal momentum 

and vertical turbulent heat flux, respectively.  In statistical terms, these fluxes, as an 

average of the product of deviation components, are also called covariances.  Figure 14.1 

shows a sketch of subgrid-scale vertical velocity ( 'w ) and potential temperature ( 'θ ) and 

the subgrid scale covariance ''θw .  As can be seen from the figure, the vertical heat flux 

associated with the resolvable dependent variables is approximately zero, i.e. 0≅θw  

because 0w = .  However, the covariance or the vertical turbulent heat flux, ''θw , is not 

0.  Both grid value averages are assumed to be constant over xΔ .   

 If we apply the Reynolds averaging to a time interval and a grid volume of a 

numerical model, then the Reynolds-averaged value of a variable φ represents, 
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This is called grid-volume averaging.  Thus, 'φ φ φ= −  is the fluctuation or perturbation 

across the grid intervals, ,  ,  ,  and time interval x y z tΔ Δ Δ Δ  fromφ .  Applying the 
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Reynolds averaging to the grid volume of the mesoscale model system of (13.5.6)-

(13.5.14) with Boussinesq approximation leads to 

 
( ) ( ) ( ) 2

' ' ' ' ' '1 1 ,o o o

o o

u u u v u wDu pfv u
Dt x x y z

ρ ρ ρ
ν

ρ ρ

⎡ ⎤∂ ∂ ∂∂ ⎢ ⎥= − − + + + ∇
∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

 (14.1.3) 

 
( ) ( ) ( ) 2

' ' ' ' ' '1 1 ,o o o

o o

u v v v v wDv pfu v
Dt y x y z

ρ ρ ρ
ν

ρ ρ

⎡ ⎤∂ ∂ ∂∂ ⎢ ⎥= − − − + + + ∇
∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

 (14.1.4) 

 
( ) ( ) ( ) 21 1

' ' ' ' ' '1 1 ,o o o

o o o

u w v w w wDw p g w
Dt z x y z

ρ ρ ρρ ν
ρ ρ ρ

⎡ ⎤∂ ∂ ∂∂ ⎢ ⎥= − − − + + + ∇
∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

 (14.1.5) 

 
( ) ( ) ( )v 2

' ' ' ' ' '1 ,o o o

o

u v wD S
Dt x y zθ

ρ θ ρ θ ρ θθ κ θ
ρ

⎡ ⎤∂ ∂ ∂
⎢ ⎥= − + + + ∇

∂ ∂ ∂⎢ ⎥⎣ ⎦
 (14.1.6) 

 
( ) ( ) ( ) 2

' ' ' ' ' '1 o o o

o

u v wD S
Dt x y zφ

ρ φ ρ φ ρ φφ κ φ
ρ

⎡ ⎤∂ ∂ ∂
⎢ ⎥= − + + + ∇

∂ ∂ ∂⎢ ⎥⎣ ⎦
,    

  ,  ,  ,  ,  ,  and v c i r s gq q q q q qφ = , (14.1.7) 

 ( ) ,0=⋅∇ Voρ     ( , , )u v w=V , (14.1.8) 

 p RTρ= ,   (14.1.9) 

 
/

v

d pR c

s
v

pT
p

θ ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, (14.1.10) 

 (1 0.61 )v vT T q= + , (14.1.11) 
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where sp  is 1000 hPa, and  
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 In the above equation, oφ  is the layer average over the domain ( , )X Y , which is 

assumed to be large enough compared with the mesoscale phenomena concerned, to 

ensure a hydrostatic balance.  Since oφφφ −=1 , 1φ is the nonhydrostatic part of φ  and/or 

the perturbation from large-scale oφ . The terms ''θu , ''θv , and ''θw  are the turbulent 

heat fluxes, ''wu and '' wv  the vertical turbulent fluxes of horizontal momentum, and ''vu  

the meridional turbulent flux of zonal momentum.  In deriving the above equations, we 

have assumed 1/1 <<oρρ . We have also partitioned p  and ρ  into hydrostatic (with 

subscript “o”) and nonhydrostatic parts (with subscript “1”).  Above the boundary layer, 

these flux terms are very small compared with other terms and may thus be neglected.  In 

the boundary layer, the turbulent flux divergence terms are of the same order as the other 

terms in (14.1.3)-(14.1.8). Therefore, they cannot be simply dropped from the equation 

system.  Note that the equation set (14.1.3)-(14.1.11) is not a closed system 

mathematically since in addition to the unknown mean variables, other flux terms are 

also present.  In order to make the equation set closed, we need to represent or 

parameterize the turbulent flux terms and the source and sink terms using the mean 

variables.  The need for parameterizations poses a closure problem, which is a 

challenging task in parameterizing the PBL processes, as well as for moist and radiative 

transfer processes.  The horizontal derivatives of the turbulent flux terms are normally 
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associated with some horizontal inhomogeneities, such as cities and coastlines, which 

may be neglected over horizontally homogeneous regions. 

 In addition to the Reynolds averaging method, several different averaging methods 

may also be adopted.  For example, for a data set measured discretely, an ensemble 

averaging may be adopted, 

 ,
1

lim 1 ( , , )
N

e o o o o
k

x y z t
N N

φ φ
=

=
→ ∞ ∑ . (14.1.15) 

If the turbulence is stationary and homogeneous, which is unlikely in the real world, then 

the above three averaging methods should give the same value.  An alternative approach 

in averaging data set is to take the grid-volume averaging, as defined in (14.1.2).  For 

cases where there are N data points to be averaged over a grid volume, one may take the 

generalized ensemble averaging,  
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 In mesoscale models, physical processes such as the planetary boundary, moist and 

radiative transfer, land-surface interaction, and air-sea interaction processes need to be 

parameterized.  In this chapter, we will limit our discussion to the introduction of basic 

principles and methods in parameterizing the first three processes. However, this does not 

mean that the importance of the parameterization of other physical processes will be 

neglected. 

 

14.2 Parameterization of planetary boundary layer processes 

 The objective of the PBL parameterization is to use the grid-volume averaged mean 

variables to represent the turbulent flux terms associated with turbulent eddies, as well as 
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the heat source and sink terms present in the PBL, such as those present in (14.1.3)-

(14.1.8). In other words, we need to close the system mathematically. Thus, a suitable 

closure scheme is needed. Using the appropriate parameterizations of these terms, we are 

able to numerically integrate the Reynolds-averaged equations of the mean motion, such 

as (14.1.3)-(14.1.11).   

 One simple way to model the planetary boundary layer is to treat the whole layer as 

one slab and predict the vertically averaged properties of the PBL.  In this approach, the 

details of the vertical structure of the PBL are ignored, which may work for cases where 

vertical gradients are small throughout much of the PBL, such as the convective 

boundary layer, or for use in models such as general circulation models (GCMs), which 

do not have enough vertical resolution.  However, this approach is not appropriate for 

mesoscale models since the prediction of some detailed information of the PBL is 

expected.  In mesoscale models, the PBL is divided into a number of layers, depending 

upon what the concerned physical phenomenon requires.  

 Physically, the PBL may be approximately divided into the surface layer and the 

layer above it.  In the lowest part of the surface layer, i.e., the viscous sublayer, molecular 

motions dominate the transfer of dependent variables. The viscous sublayer forces the 

velocity to vanish (i.e., no-slip boundary condition) at the ground, which continuously 

leads to the development of turbulent eddies.  Thus, the molecular viscosity and thermal 

diffusion terms in these equations are kept, but the turbulent flux terms in (14.1.3) - 

(14.1.7) are neglected.  The viscious sublayer normally has a depth of O(1 cm), but can 

be as shallow as 0.001 cm over smooth ice.  Over most natural surfaces, a roughness 

layer or canopy layer forms above the viscous sublayer.  The roughness layer may go up 
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to 10 m over large buildings (Oke 1987), and the height is referred to as aerodynamic 

roughness, usually denoted as oz .  Due to the constraint of vertical resolution, the 

viscous sublayer and roughness layer of the surface layer are often neglected in mesocale 

models.   

 Above the viscous sublayer or roughness layer exists the upper part of the surface 

layer, which usually occupies up to 10-100 m, about 10% of the entire PBL.  The upper 

part of the surface layer, which is often referred to simply as the “surface layer,” is 

mainly maintained by the vertical momentum transfer associated with turbulent eddies.  

Coriolis and pressure gradient forces do not play a major role in the surface layer.   

Therefore, for the purpose of modeling the surface layer, it is normally assumed that: (1) 

the subgrid scale fluxes independent of z, (2) the Coriolis force negligible, (3) a steady 

state, and (4) there is a horizontal homogeneity over a flat surface. Based on these 

assumptions, empirical formulas have been developed to specify the relationship between 

dependent variables and subgrid fluxes. The layer above the surface layer becomes the 

mixed layer under unstable and convective conditions and the outer layer under neutral 

and stable conditions.   

 The mixed layer and outer layer have very different characteristics in terms of wind, 

temperature, and humidity profiles. Figure 14.2 shows typical profiles of mean virtual 

potential temperature, specific humidity, wind speed, and heat, moisture, and momentum 

fluxes within a convective boundary layer.  The virtual potential temperature and wind 

speed are quite uniform in the mixed layer due to mixing associated with turbulent 

eddies.  On top of the mixed layer is the transition layer, which contains a temperature 

inversion and an increase in wind speed, and then the free atmosphere.  On the other 
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hand, a typical stable boundary layer, say induced by the nocturnal boundary layer, has 

an inversion layer above the surface (Fig. 14.3). Within the stable boundary layer, the 

atmosphere has its largest stability near the surface, decreasing smoothly toward neutral 

with height.  A temperature inversion is often observed near the surface.  Higher in the 

stable boundary layer, the wind speed may increase with height, reaching a maximum 

near the top of the stable layer, and thus becoming what is known as the nocturnal low-

level jet.  The whole depth of the stable boundary layer is on the order of several hundred 

meters, much shallower than the convective boundary layer. 

 

14.2.1 Parameterization of the surface layer 

 Simulating the surface layer is important since momentum generated in the free 

atmosphere and the PBL tends to dissipate in this layer, while the heat and moisture are 

transported upward to the PBL from the ground through this layer.  Analogous to 

molecular diffusion, the subgrid scale fluxes may be represented by 
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where mK is called the exchange coefficient of momentum or simply eddy viscosity, and 

qh KK  and , are called the exchange coefficients or eddy diffusivities of heat and water 

vapor, respectively.  In practice, qK is often assigned as the same value as hK . The 

exchange coefficients are often taken as constants, and are empirically related to height 

and stability as calculated from the NWP model output, and this approach of the 

parameterization of momentum, heat, and moisture fluxes is called K theory.  The K 

theory is a first-order closure since the fluxes are parameterized proportional to the mean 
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values, which have also been applied to the parameterization of the PBL above the 

surface layer. Since the subgrid fluxes are assumed to be independent of height in the 

surface layer, we may define a friction velocity *u , flux temperature *θ , and *q as 

 ( )1/ 22 22
* / ' ' ' 'ou u w v wτ ρ= = + ; 

 ''sin    ;''cos 2
*

2
* wvuwuu −=−= μμ ; )/(tan 1 uv−=μ ; 

 '';'' **** qwqu   wu −=−= θθ ,                                                                       (14.2.2) 

where oτ is the shearing stress generated by the horizontal wind.   If the x-axis is chosen 

such that ' ' 0v u v= = , then (14.2.2) reduces to ''2
* wuu −= .  From dimensional analysis, 

the wind shear ( zV ∂∂ / ) is proportional to the velocity scale ( *u ) divided by the length 

scale (z), 
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where k is the von Kármán constant, which has an empirical value of 0.4.  Integrating 

(14.2.3) leads to the well-known logarithmic wind profile for a neutrally-stratified, 

constant-flux surface layer, 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

oz
z

kz
uzV ln )( * . (14.2.4) 

 Based on the Monin and Obukov similarity theory, we have 
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where L is the Monin-Obukov length defined as *
2
* / θθ kguL = , ** /'' uw θθ −= , and φm is 

estimated by an empirical formula, such as (Businger 1973), 

 0/    ,)/151( 4/1 ≤−≈ − LzLzmφ  (14.2.6) 
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Integrating (14.2.5) from oz , where 0=V , to z gives 
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where 
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Similarly, the vertical profiles of θ and q  can be formulated as 
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where hϕ is an empirical formula.  For example, the following hϕ has been proposed 

(Businger 1973), 
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The symbol β  represents the characteristic vertical mixing length for θ  and q .  An 

empirical value of 1.35 has been used.  Note that at the bottom of the surface layer (i.e. 

ozz = ) or the top of the viscous sublayer or roughness layer, the no free-slip conditions 

for the velocities are often assumed, i.e. 0=== wvu , and the potential temperature and 

specific humidity may be estimated by (Deardorff 1974) 

 45.0
** )/)(/( 0962.0 νθθθ oGz zuko +=  and (14.2.13) 

 0.45
* *0.0962 ( / )( / )

oz G oq q q k u z ν= + , (14.2.14) 

where ν  is the kinematic viscosity coefficient of air, which has a value of about 

5 2 11.5x10 m s− − . 

 

14.2.2 Parameterization of the PBL 

 As mentioned above, the layer above the surface layer is called the mixed layer under 

unstable conditions, and the outer layer under neutral and stable conditions.  The mixed 

layer extends from the top of the surface layer to 1-2 km or higher under unstable 

conditions, and several hundred meters under neutral and stable conditions.  Three 

boundary layer flow regimes, based on different sets of force balances, have been 

proposed to help understand the dynamics of the PBL above the surface layer: (1) Ekman 

layer, which is supported by a balance among the pressure gradient force, Coriolis force, 

and frictional force, (2) advective boundary layer, which is supported by a balance 

among pressure gradient force, frictional force, and advective acceleration, and (3) Stokes 

boundary layer, which is supported by a balance between pressure gradient force and 

frictional force.  In order to close the equation set (14.1.3)-(14.1.11), the subgrid scale 
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fluxes need to be represented by the mean values averaged over grid and time intervals.  

From a numerical modeling point of view, the parameterizations of the PBL above the 

surface layer may be roughly classified as: (a) bulk aerodynamic parameterization , (b) 

K-theory parameterization, (c) turbulent kinetic energy closure scheme, and (d) higher-

order closure schemes.   

 

a. Bulk aerodynamic parameterization 

 The bulk aerodynamic parameterization treats the boundary layer as a single slab and 

assumes the wind speed and potential temperature are independent of height, and the 

turbulence is horizontally homogeneous.  Based on these assumptions, the horizontal 

turbulence flux divergence terms in (14.1.3)-(14.1.7) can be neglected, and the vertical 

subgrid turbulence fluxes are parameterized by 

 
2

' ' cosdu w C V μ= − ; μsin ''
2

VCwv d−= ; ( )' ' ozhw C Vθ θ θ= − − , (14.2.15) 

where dC  and hC  are nondimensional drag and heat transfer coefficients, respectively, 

2 2 1/ 2( )V u v= + , 1tan ( / )v uμ −= , and oz  is the roughness or top of the surface layer.  

The values of V , u , v , and θ are evaluated at the standard anemometer height, 10 m. 

The bulk aerodynamic parameterization has been adopted in some GCM and regional 

climate models.  For a given reference height, dC  increases with increasing roughness, 

which ranges from 1.3x10-3 over ocean surface to 7x10-3 over rough land surface. From 

the formulas proposed in the parameterization of the surface layer, the expressions of dC  

and hC  may be derived 
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 ( )22 / ln( / ) ( / )d o mC k z z z Lϕ= − ;  

 ( ) ( )2 / ln( / ) ( / ) ln( / ) ( / )h o m o hC k z z z L z z z Lβ ϕ ϕ= − − , (14.2.16) 

where mϕ  and hϕ are defined in (14.2.8) and (14.2.12), respectively, and β is an 

empirical value defined in (14.2.9). As mentioned earlier, an empirical value 1.35 has 

been proposed for β .   

 Due to the assumption of height-independent wind speed and potential temperature 

and horizontally homogeneous turbulence, the bulk aerodynamic parameterization is 

more suitable for representing a well-mixed boundary layer than the neutral and stable 

boundary layers.  Based on these assumptions, further assuming a three-way balance 

among the Coriolis force, pressure gradient force, and the vertical gradient of the 

turbulent momentum flux from (14.1.3) and (14.1.4), and using the bulk 

parameterization, one may derive the following equations for u and v , 

 g su u Vvκ= − ; sv Vuκ= , (14.2.17) 

where )/( fhCds ≡κ , h is the mixed layer height, and gu is the geostrophic wind speed at 

the bottom of the mixed layer.  Equation (14.2.17) can also be rewritten as 

 1x ;     ( ,  v)d

o

Cf p V u
hρ

= − ∇ − =k V V V , (14.2.18) 

which gives a three-way balance with the wind deflected toward the low pressure.  In 

addition, the cross-isobar flow increases as the turbulent drag increases.  Note that in a 

rotational frame of reference or in the presence of directional shear, the frictional force 

on a fluid element need not be parallel and opposite to the velocity vector (e.g., Fig. 6.4 
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of Arya 2001), as commonly depicted in many textbook schematics of the force balance 

in the frictional layer (e.g., Holton 2004).   

 

b. K-theory parameterization 

 Although the bulk parameterization is simple and easy to implement in a numerical 

model, it cannot properly represent a neutrally and stably stratified boundary layer.  The 

reason for this is that the wind speed and direction in this situation does vary significantly 

with height and the boundary layer above the surface cannot be treated as a single slab.  

In order to close the mathematical problem, the subgrid turbulent flux terms are assumed 

to be proportional to their corresponding local gradients of the mean values, analogous to 

molecular diffusion.  In this approach, the turbulent flux terms in (14.1.3)-(14.1.7) are 

written as (14.2.1).   

 Similar to the bulk parameterization, the subgrid turbulent flux divergence terms are 

neglected.  The simplest way to determine the exchange coefficients in the boundary 

layer is based on the mixing length hypothesis. Analogous to the mean free path of 

molecules, the mixing length hypothesis assumes that an air parcel that is displaced 

vertically will carry the mean properties of its original level for a characteristic length, 

i.e. the mixing length ( l ), before mixing with its environment. Since zulu ∂∂≈ /'  and mK  

are proportional to 'lu , based on dimensional argument, we then have 

 zulKm ∂∂= / 2 . (14.2.19) 

The eddy and thermal diffusivity coefficients, mK and hK , respectively, are often taken as 

either constants or empirically related to height and stability as calculated from NWP 

model output.  As mentioned in the parameterization of the surface layer discussion, this 
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approach of the parameterization of momentum, heat, and moisture fluxes is referred to 

as K theory. The K theory is a first-order closure because the fluxes are parameterized 

proportional to the mean values.  If the exchange coefficients are taken as constants, then 

they are referred to as local exchange coefficients. For example, the local exchange 

coefficient may be expressed as (Blackadar 1979) 

 Stably stratified ( 0/ >∂∂ zθ ): 

 CChm RizVlRiRiKK /)/()(1.1 2 ∂∂−== , CRiRi ≤  (14.2.20a) 

    0= ,            CRiRi > ,  

 Unstably stratified ( 0/ ≤∂∂ zθ ): 

   2/12 )211)(/( RizVlKm −∂∂= ; 2/12 )871)(/( RizVlKh −∂∂= , (14.2.20b) 

where 0.25CRi =  is the critical Richardson number.  Note that CRi distinguishes whether 

the flow is dynamically (shear) stable or not. A value of kzl =  for z < 200 m (with 

35.0=k ) and 700 m for 200 mz ≥ in (14.2.20a) has been suggested (McNider and 

Pielke 1981). 

 The local K-theory approach has been adopted in a number of mesoscale models as an 

option.  In addition to Blackadar’s formulation, other formulations of local exchange 

coefficients have also been proposed.  However, approaches such as the local K-theory 

scheme have been found to have some deficiencies. The most serious problem in this 

formulation is that the transport of mass and momentum in the PBL is mostly 

accomplished by the largest eddies and such eddies should be parameterized by the bulk 

properties of the PBL instead of the local properties (e.g., Wyngaard and Brost 1984; 
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Holtslag and Moeng 1991).  The discrepancy in eddy size makes the local K-theory 

problematic for unstable conditions, and its implementation could induce the appearance 

of countergradient fluxes.  In order to resolve this problem, non-local K-theory has been 

proposed (e.g., Deardorff 1972; Troen and Mahrt 1986; Holtslag and Moeng 1991). For 

example, the turbulence diffusion equations for prognostic variables can be expressed by  

 C cK
t z z
φ φ γ∂ ∂ ∂⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦

,     , , , ,oru v w qφ θ=  (14.2.21) 

where orc m hK K K=  and Cγ is a correction to the local gradient that incorporates the 

contribution of the large-scale eddies to the total flux.  The eddy diffusivity coefficient 

can be formulated as 

 1
p

m s
zK kw z
h

⎛ ⎞= −⎜ ⎟
⎝ ⎠

,  (14.2.22)  

where p is the profile shape exponent taken to be 2, k is the von Karman constant (= 0.4), 

z is the height from the surface, h is the height of PBL, and sw is a mixed-layer velocity 

scale (e.g., Troen and Mahrt 1986; Hong and Pan 1996).    

 Assuming a three-way balance among the Coriolis force, pressure gradient force, and 

the vertical gradient of the turbulent momentum flux from (14.1.3) and (14.1.4), in 

addition to the use of the K-theory parameterization with constant mK , one may derive 

the following Ekman layer relationships 

 
2

2 ( ) 0m g
uK f v v

z
∂

+ − =
∂

, (14.2.23) 

 
2

2 ( ) 0m gg
vK f u u

z
∂

− − =
∂

. (14.2.24) 
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The derivation of the above equations is similar to that of (14.2.17), except that the K-

theory parameterization is adopted instead of the bulk parameterization.  Introducing a 

new complex variable, ivu + , (14.2.23), and (14.2.24) can be combined into a single 

equation, 

 
2

2

( ) ( ) ( )m gg gg
u ivK if u iv if u iv

z
∂ +

− + = − +
∂

. (14.2.25) 

The solution of (14.2.25) subjected to the no-slip boundary conditions at the ground, 

0u v= =  at 0=z , and approaching geostrophic wind speeds far from the ground, i.e. 

gu u→ and gv v→ as ∞→z  is 

 (1 cos )z
gu u e zγ γ−= − ; sinz

gv u e zγ γ−= , (14.2.26) 

where 2/1)2/( mKf=γ .  The above solution is sketched in Fig. 14.4.  The wind veers (i.e. 

turns clockwise) and increases with height to be slightly over the geostrophic value, and 

then reaches to be nearly the geostrophic value at γπ /=z , which may also be defined as 

the Ekman layer depth.  The spiral wind profile is known as Ekman spiral.   

 

c. Turbulent kinetic energy closure scheme 

 The first-order closure schemes, such as K-theory parameterization, may be improved 

by predicting one of the subgrid-scale variables, the turbulent kinetic energy (TKE) per 

unit mass 2 2 2( ' ' ' ) / 2e u v w⎡ ⎤= + +⎣ ⎦ , while the other subgrid scale turbulent flux terms are 

diagnosed and related to both the TKE and the grid-scale mean values. The prognostic 

prediction of TKE in the parameterization scheme is referred to as the TKE or one-and-a-

half-order closure. 
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 When the Reynolds number of a laminar flow increases, it may break down into a 

turbulent flow.  A turbulent flow is characterized by high randomness, nonlinearity, 

diffusivity, vorticity, and dissipation.  The breakdown is often associated with instability, 

such as shear instability or buoyant (static) instability.  Shear and buoyancy are the two 

major sources of the production of TKE, which may be denoted as S and B, respectively.  

Once the turbulence is generated and fully developed into a steady state in terms of 

averaged flow properties, then the instability is no longer required to sustain the turbulent 

flow.  In order to reach steady state turbulence (statistically), certain mechanisms are 

required to remove and redistribute TKE.  These mechanisms are often attributed to the 

dissipation (D) due to turbulent eddy viscosity and molecular viscosity, and the transport 

and redistribution (Tr ) due to advection and pressure forces.  Thus, the time evolution of 

TKE can be written as 

 /De Dt S B Tr D= + + − . (14.2.27) 

To derive the mathematical form of the TKE equation, we first substitute 'u u u= + , 

'v v v= + , 'w w w= + , 1' 'op p p p p p= + = + + , '' 1 θθθθθθ ++=+= o , 

1' 'oρ ρ ρ ρ ρ ρ= + = + +  into (13.5.6)-(13.5.8) with f neglected, to obtain, 

 2( ') 1 ( ') ( ')
o

D u u p p u u
Dt x

ν
ρ

+ ∂ +
= − + ∇ +

∂
, (14.2.28) 

 2( ') 1 ( ') ( ')
o

D v v p p v v
Dt y

ν
ρ

+ ∂ +
= − + ∇ +

∂
, (14.2.29) 
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( ') 1 ( ') ( ') ( ')
o o

D w w p p g w w
Dt z

ρ ρ ν
ρ ρ

+ ∂ +
= − − + + ∇ +

∂
. (14.2.30) 
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Unlike in Section 14.1, in deriving the above equation, we have used the partition of 

p and ρ  into hydrostatic ( op and oρ −  large scale) and nonhydrostatic ( 1p and 1ρ −  

mesoscale) parts, neglected 1ρ  and 'ρ relative to oρ except in the buoyancy (associated 

with the gravity) term, and assumed an anelastic fluid. Now, multiplying (14.2.28)-

(14.2.30) by ' ,' ,' wvu , respectively, and then taking the Reynolds averaging over a grid 

volume lead to the TKE equation, 

 

1' ( ' ') ( ' ') ( ' ') ' '

              1            2                                      3                                      4

     ' ' u ' ' u ' '

x y z
o o

x y

e ge e u p v p w p w
t

u u u v u w

ρ
ρ ρ

⎛ ⎞ ⎛ ⎞∂ ⎡ ⎤= − ⋅∇ − ⋅∇ − + + −⎜ ⎟ ⎜ ⎟⎣ ⎦∂ ⎝ ⎠ ⎝ ⎠

− + +

V V

( ) ( )

( ) ( )2 2 2 2

 u ' ' ' ' ' ' 

                                                         5

     ' ' ' ' ' ' ' ' '

                                                             

z x y z

x y z x y z

u v v v v v v w v

u w w v w w w w w e u v wν ν

⎡ + + +⎣

⎤+ + + + ∇ − + +⎦
   6                     7

, (14.2.31) 

The left-hand side of (14.2.31) represents the local rate of change of the TKE.  Term 1 is 

the advection of e  by the grid-volume averaged velocity.  Term 2 represents the grid-

volume average of the advection of TKE by the subgrid-scale perturbation velocity.  

Term 3 represents the change in TKE by advection through the boundaries of the grid 

volume.  Term 3 is difficult to measure and is thus often ignored in the closure problem.  

Term 4 represents the buoyancy production of the TKE, while Term 5 represents the 

shear production of the TKE.  Term 6 represents the diffusion of turbulence by molecular 

diffusion.  Term 7 is the sink of TKE by molecular diffusion.  In mesoscale modeling, 

Terms 6 and 7 are often ignored. 
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d. Higher-order closure schemes 

 In fact, subgrid-scale perturbations such as ', ', ', and 'u v w θ , can be predicted by 

subtracting the resolved flow equations from the full equations, similar to the derivation 

of TKE equation.  The proposed method will generate new unknown variables involving 

triple correlation of the perturbations, which must be represented by the mean variables 

and quadratic perturbation terms, in order to close the system mathematically.  One can 

go further by deriving the prediction equations for the third moments and close the 

system on higher-order correlation terms (Mellor and Yamada 1974), commonly referred 

to as the higher-order closures.  The higher-order closure schemes are capable of 

representing a well-mixed layer structure.  Figure 14.5 shows a comparison of 

numerically simulated virtual potential temperature profiles in the boundary layer for 

Day 33 of the Wangara experiment by using a TKE closure scheme and a third-order 

closure scheme, and the observational data.  The TKE closure scheme (Fig. 14.5a) is 

capable of capturing the observed major features (Fig. 14.5c) compared to the third-order 

closure scheme (Fig. 14.5b).  The higher-order closure schemes are computationally 

expensive and do not necessarily make a significant improvement in accurately 

parameterizing the PBL compared to lower-order closure schemes, such as TKE.   

  

14.3 Parameterization of moist processes  

 As discussed in Chapters 8 and 9, many severe mesoscale weather phenomena, such 

as thunderstorms, squall lines, mesoscale convective systems, rainbands, and frontal 

circulations, are associated with moist processes.  In addition, the presence of water 

vapor and clouds in the atmosphere also play important roles in the reflection, absorption, 
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and emission of both solar and terrestrial radiation.  In most mesoscale NWP models, the 

majority of clouds, especially convective clouds, cannot be resolved by the grid mesh 

system.  Thus, the moist variables are parameterized by the grid-volume mean variables 

in a way analogous to the parameterization of turbulent eddies in the PBL.  The situation 

is different in cloud models because normally the horizontal resolution is fine enough to 

roughly represent the clouds. The microphysical processes, however, still need to be 

parameterized or appropriately represented.  Thus, the accurate representation of the 

moist processes in mesoscale NWP and cloud models has become one of the most 

challenging tasks in mesoscale modeling. Many details of the parameterization schemes 

are still topics of current research. Thus, in this section, it is only appropriate to make a 

brief summary of the representation or parameterization of these moist processes in 

mesoscale NWP models. Detailed discussions on individual parameterization schemes in 

microphysical and cumulus processes can be found in relevant literature. 

 As discussed in Chapter 13, a dry atmospheric system can be described by the 

horizontal and vertical momentum equations, the continuity equation, the thermodynamic 

equation, and the equation of state, which is composed of six equations with six unknown 

variables.  If potential temperature is adopted in the thermodynamic equation, then the 

Poisson equation is needed to close the system.  For example, (13.5.6)-(13.5.9) and 

(13.5.11)-(13.5.13) with vq  set to zero describes this dry atmospheric system.  When a 

moist atmospheric system is considered, however, effects of moist processes have to be 

represented in the heat source or sink term ( θS ) of the thermodynamic equation (13.5.9), 

and additional equations for the hydrometeors are needed to describe the moist processes. 

Equations (13.5.6)-(13.5.14) describe this type of moist atmospheric system.  The 
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derivation of equations for hydrometeors is similar to that of the continuity equation for 

dry air, based on the conservation of mass.  Different types of clouds are described by a 

different number of equations for hydrometeor effects.  For example, for warm clouds, 

three additional equations for the water vapor, cloud water, and rainwater are required, 

while for cold clouds we need to add equations for cloud ice, snow, and graupel or hail. 

Various source and sink terms portraying different hydrometeors are also represented by 

the φS term in (13.5.10).  In addition, virtual temperature and virtual potential 

temperature, instead of temperature and potential temperature, are often used in the 

equation system because vq  is no longer zero. 

 The treatments of moist processes in mesoscale models may be divided into two 

categories: (1) parameterization of microphysical processes, and (2) cumulus 

parameterization.  In the first category, the microphysical processes are represented by 

the continuity equations for each hydrometeor, such as those described in (13.5.10).  The 

source terms on the right-hand side of (13.5.10) must be formulated in a way that all 

possible microphysical interactions among different categories of hydrometeors are 

included.  Two approaches have been taken: (a) explicit representation, and (b) bulk 

microphysics parameterization (BMP).   

 

14.3.1 Parameterization of microphysical processes 

a. Explicit representation 

 In the explicit representation of the microphysical processes, each category of the 

hydrometeors, such as water vapor, cloud water, cloud ice, rain, snow, and graupel/hail, 

is represented by a continuity equation, based on the conservation of mass. Each 
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hydrometeor is further divided into different subcategories, based on the size.  For 

example, the liquid water mixing ratio in a warm cloud may be approximated by 

 
0

1

1 1  ( )
k

i i i i
i

q mN m dm m N m
ρ ρ

∞

=

= ≈ Δ∑∫ , (14.3.1) 

where ρ  is the air density, m is the cloud water mass, )(mN is the size distribution for 

cloud water, )(mmN  is the total number of cloud droplets in mass range m  to dmm +  

per unit volume of air, and subscript i  denotes a subcategory.  The continuity equation 

for liquid water may then be written as 

 i
i AUTO DIFF ACCR BREK FALL

DN N P P P P P
Dt

= − ∇ ⋅ + + + + +V , (14.3.2) 

where the P terms represent microphysical processes responsible for production or 

reduction of cloud water in a warm cloud, which include condensation from water vapor 

( AUTOP ), vapor diffusion (condensation or evaporation) ( DIFFP ), accretion ( ACCRP ), drop 

breakup ( BREKP ), and fallout ( FALLP ).   

 The continuity equation for water vapor may be written as  

 v

k

i
iDIFFAUTOi

v qmPPm
Dt

Dq 2

1

)(1
∇+Δ+−= ∑

=

κ
ρ

, (14.3.3) 

Depending upon the number of size categories adopted, it may easily exceed 50 

equations for cloud water alone (see (14.3.2)).  In addition, the interactions among 

different size categories become very complicated and the calculations become very 

tedious and computationally expensive.   

 

b. Bulk microphysics parameterization 
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 Instead of explicit representation of microphysical processes, an alternative is to 

perform the bulk microphysics parameterization (BMP). In taking the bulk 

parameterization approach, each category of the hydrometeor is governed by its own 

continuity equation, based on the conservation of mass.  In order to avoid calculations of 

complicated interactions among the different sizes of hydrometeor particles, the shape 

and size distributions are often assumed a priori and the basic microphysical processes 

are parameterized.  The concept of bulk microphysical parameterization can be 

understood by considering a nonprecipitating cloud which contains only water vapor 

( vq ) and cloud water ( cq ).  Since the total water-substance mixing ratio, cvT qqq += , is 

conserved, the continuity equations for water vapor and cloud water are, 

 vDq c
Dt

= − , (14.3.4) 

 cDq c
Dt

= , (14.3.5) 

where c represents the condensation rate of water vapor into cloud water when 0c > and 

evaporation rate when 0c < .  The rewritten contunity equations can be extended to the 

warm clouds with precipitation, which include water vapor, cloud water, and rain, such 

as the warm-rain BMP scheme proposed by (Kessler 1969).   In the warm-rain bulk 

parameterization, more source and sink terms associated with microphysical processes, 

such as evaporation of cloud water, evaporation of rainwater, autoconversion of cloud 

water to form rain, and accretion of cloud water by rainwater, need to be added to the 

right hand side of the above equations.  In addition, a continuity equation for rainwater 

with a fallout term should also be added to the system. 
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 The warm rain BMP has been extended to include ice phase components such as 

cloud ice, snow, and graupel/hail (e.g., Lin, Farley, and Orville 1983 - LFO scheme).  In 

this BMP scheme, rain, snow, and graupel are assumed to have terminal velocities in 

order to precipitate downward, while the rest do not possess terminal velocities.  Figure 

14.6 illustrates the cloud microphysical processes in the LFO scheme.  The symbols are 

explained in Table 14.1. The major microphysical processes include autoconversion 

(growth from only one category of hydrometeors, such as condensation and aggregation), 

evaporation, sublimation, freezing, melting, accretion (growth between different 

categories of hydrometeors), Bergeron process (growth of ice at the expense of cloud 

water in cold clouds because the satuaration vapor pressure with respect to ice is less than 

that with respect to water), and dry and wet growth of graupel.   

 In the scheme sketched in Fig. 14.6, the shape of liquid water and ice particles are 

assumed to be spherical. The size distributions of precipitation particles, i.e., rain ( rq ), 

snow ( sq ), and graupel or hail ( gq ), are hypothesized as 

 ( ) exp( )k ok k kN D N Dλ= − ,   , ,  or gk r s=   (14.3.6) 

where okN  and kλ are the intercept and slope parameters of the size distribution, 

respectively, and kD is the diameter of the hydrometeor.  Equation (14.3.6) is called the 

Marshall-Palmer (1948) distribution.  The slope parameter kλ  is determined by 

multiplying (14.3.6) by the particle mass and integrating over all diameters and equating 

the resulting quantities to the appropriate water contents, which leads to  
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. (14.3.7) 
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Since okN is held constant and only kλ is prognostic, this type of BMP scheme is called 

one-moment BMP scheme.   

 The continuity equations for the water vapor and five categories of hydrometeors may 

be written as 

 j
j h j j

q
q K q P

t
∂

= − ⋅∇ + ∇ ⋅ ∇ +
∂

V ,  , ,  or j v c i= , (14.3.8)

 1 ( )k
k m k k k k

q q K q P U q
t z

ρ
ρ

∂ ∂
= − ⋅∇ + ∇ ⋅ ∇ + +

∂ ∂
V ,   , ,  or k r s g= , (14.3.9) 

where kU  represents the terminal velocities of precipitation hydrometeors (rain, snow, 

and graupel), mK  and hK are the eddy viscosity and eddy thermal diffusivity, 

respectively, where the last term of (14.3.9) is the fallout term.  The production (i.e. P 

terms, see Table 14.1) terms are sketched in Fig. 14.6.  Note that the subgrid scale flux 

terms have been parameterized by the K-theory closure.   

 Figure 14.7 shows simulations of tropical cyclones using the LFO scheme and the 

importance of ice phase in the simulations.  The warm-rain simulation shows an outward-

sloping eyewall, subsidence inside the eyewall, and an area of mesoscale ascent 

extending 20-30 km out from the eyewall (Fig. 14.7a).  The ice-phase simulation shows a 

similarly sloping eyewall below 5-6 km, but above this level the eyewall updrafts become 

more vertically oriented.  An area of mesoscale ascent containing several convective 

updrafts is located radially outward from the convective ring at 60-70 km.  The 

downdrafts in the ice-phase simulation are stronger and more coherent horizontally (Fig. 

14.7c).  They tend to originate near the melting level (dashed line).  The tangential wind 

of the warm-rain simulation indicates maximum winds at r = 33-35 km in a deeper layer 
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(Fig. 14.7b), while the ice-phase simulation shows maximum winds at r = 17-19 km in a 

shallow layer (Fig, 14.7d).   

 Different approaches have been taken to parameterize ice-phase microphysical 

processes, such as treating aggregates of ice crystals as a distinct snow species (e.g., 

Cotton et al. 1986), and to improve the microphysical parameterization schemes, such as 

the addition of collision between snow and cloud water (riming) (Rutledge and Hobbs 

1984; Chen and Sun 2002; Lin et al. 2005). Other research has improved these schemes 

through the inclusion of four ice classes: small ice crystals, snow, graupel and frozen 

drops/hail (Ferrier 1994), ensuring that supersaturation (subsaturation) cannot exist at a 

grid point that is clear (cloudy) (Tao et al. 2003), and diagnosis of the cloud ice number 

concentration from its mixing ratio (Hong et al. 2004).  In real-time NWP models, 

simplified BMP schemes have been developed to make numerical simulations more 

efficient computationally.  The most significant improvement is the development of two- 

or multi-moment BMP schemes.  In general, the size distribution (14.3.6) includes the 

shape factor and is written as 

 ( ) exp( )k ok k k kN D N D Dα λ= − ,   , ,  or gk r s= , (14.3.10) 

where α  is called the shape parameter.  Thus, there are three parameters or moments, 

okN ,  kλ , and α , to be determined.  Following Kessler’s (1969) warm-rain scheme, the 

LFO scheme ((14.3.6) and Fig. 14.6) assumes spherical precipitation particles ( 0α = ) 

and that okN is a contatnt, which yields a one-moment scheme.  If two of these parameters, 

such as okN  and kλ , are prognostic, and the third parameter (α ) is held constant, the 

scheme is called two-moment scheme (e.g., Ferrier 1994; Meyers et al. 1997; Reisner et 
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al. 1998; Morrison and Pinto 2005; Seifert and Beheng 2006).  If all of these three 

parameters are prognostic, then it is called three-moment scheme (e.g., Milbrandt and 

Yau 2005).     

 

14.3.2 Cumulus parameterization 

 Even though most individual cumulus clouds have horizontal scales smaller than the 

mesoscale model grid mesh, the collective effects of cumulus clouds, such as the 

convective condensation and transport of heat, moisture, and momentum, on the larger 

scale environment are essential and need to be represented by grid-scale variables.  On 

the other hand, the large-scale forcing tends to modulate the cumulus convection, which 

in turn determines the total rainfall rate.  The representation of these processes is carried 

out by the cumulus parameterization (CP) schemes. To parameterize the interactions 

between cumulus clouds and their environment, we must determine the relationship 

between cumulus convection and its larger-scale environment.  In practice, CP schemes 

may be divided into schemes for large-scale models and schemes for mesoscale models.  

However, it is rather difficult to make a clear cut decision on distinguishing these two 

types of models.  The mesoscale models may refer to models having grid spacing in 

between 10 to 50 km and a time step of several minutes or less, while the large-scale 

models may refer to models having grid spacing larger than 50 km and a time step greater 

than several minutes.  For models having grid spacing less than 10 km, BMP are often 

employed.  Cumulus parameterization poses a challenging problem in atmospheric 

modeling and is still a topic of current research.  Nevertheless, due to the rapid 

advancement in computing power, higher grid resolution mesoscale NWP models will be 
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able to adopt bulk microphysics parameterization schemes directly in the foreseeable 

future and reasonably resolve the mesoscale convective clouds and precipitating systems. 

However, many operational and research NWP models are initialized by global models 

which still rely heavily on CP schemes to represent the cumulus clouds, especially in 

areas with sparse data.  Thus, some basic understanding of CP schemes is required for 

mesoscale modelers to interpret modeling results because some simulated features might 

have been implicitly inherited from the use of CP schemes in the large-scale or global 

models. 

 Existing parameterizations of cumulus convection for large-scale models may be 

divided into two groups: (a) equilibrium between mass or moisture supply and 

consumption is taken as the guiding principle, and (b) a balance between energy supply 

and consumption is postulated  (Raymond 1994).  The first group includes Kuo (1965) 

schemes and the second group includes convective adjustment schemes (e.g., Manabe et 

al. 1965, Kurihara 1973; Betts and Miller 1993) and Arakawa-Schubert (Arakawa and 

Schubert 1974) scheme.  Schemes developed for mesoscale models include the Kain-

Fritsch (Kain 2004) and Grell (1993) schemes, among others.  In the following, we will 

briefly describe the convective adjustment scheme and Kuo schemes, which are 

presented in order to help understand the basic concepts of cumulus parameterization, as 

well as some of the schemes developed for mesoscale models.  

 

a. Convective adjustment schemes 

 Convective adjustment refers to the concept that an unstable lapse rate cannot persist 

in the atmosphere and tends to be removed by either dry or moist convection.  Thus, it is 
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plausible to assume that it will do so by adjusting the vertical stratification toward a state 

that is approximately neutral for moist convection.  If the time scale of convection is 

much smaller than that of circulations resolved in a numerical model, then an 

instantaneous adjustment to a neutral state can be applied as a first approximation.  In 

addition, convective processes associated with cloud ensembles in nature are complex 

and are normally represented through a subgrid scale in mesoscale NWP models.  Any 

attempts to simulate their integrated effects by defining the actual properties of subgrid-

scale clouds require the use of many arbitrary parameters, whose values are poorly 

known in nature and that require enormous amounts of computing power.  Based on these 

arguments, convective adjustment is a conceptually simple and straightforward approach 

in which the explicit convective processes do not need to be simulated.  Figure 14.8 

shows four vertical profiles of virtual potential temperature vθ observed from four 

tropical regions of strong convection.   The four soundings in Fig. 14.8 resemble moist 

adiabats to some degree.   

 The convective adjustment scheme may be further divided into the following groups: 

(a) hard convective adjustment schemes, (b) soft convective adjustment schemes, and (c) 

time-dependent convective adjustment schemes.  In the hard convective adjustment 

scheme, the convective adjustment is involved only within layers that are saturated and 

convectively unstable (Manabe et al. 1965).  In the hard convective adjustment scheme, 

an initial large-scale sounding in which 0/ >∂∂ peθ , is adjusted so that eθ , or 

equivalently, moist static energy h (= sssp LqgzTc ++ ), is set to be constant with height 

(Krishnamurti et al. 1980).   In order to overcome the problem of rainfall rate 

overprediction, the so-called soft convective adjustment scheme is proposed. In the soft 
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convective adjustment scheme, saturation is assumed to occur only over a small fraction 

of the large-scale grid area, with the air between the clouds remaining unchanged. For 

example, the saturation is defined by 80% relative humidity by Miyakoda et al. (1969).  

In this way, convective adjustment is allowed to occur prior to grid-scale saturation and 

requires an unsaturated final state.  The use of instantaneous convective adjustment, no 

matter hard or soft adjustment, suffers some drawbacks (Frank and Molinari 1993). For 

example, due to the lack of explicit simulation of the cloud properties, the convective 

effects on momentum field associated with production and transport of hydrometeors 

cannot be described by simply adjusting the lapse-rate.  In addition, regions of potential 

instability are removed too quickly at mesoscale. 

 The above hard and soft convective adjustment schemes are improved by computing 

the depth of the adjusted layer using parcel concepts rather than localized grid-scale 

instability.  This type of convective adjustment schemes are often referred to as time-

dependent convective adjustment schemes, and may be accomplished in a number of 

ways.  For example, the the adjustment time is specified explicitly in the Betts-Miller 

(1986) CP scheme.  The Betts-Miller CP scheme is found to be quite robust for a wide 

variety of applications, and can be adapted for the mesoscale by adjustment of several 

parameters.  The drawbacks of Betts-Miller CP scheme include the fact that the closure 

adopted appears to be less appropriate in cases of explosive deep convection and does not 

directly generate meso- β scale highs and lows (Seaman 1999).  

 

b. Kuo schemes 
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 Based on observations, Kuo (1965) proposed that cumulus convection occurs in deep 

layers of conditionally unstable stratification over areas of mean low-level convergence.  

The cloud base is taken to be the lifting condensation level of the surface air, the vertical 

profiles of temperature distribution sT and mixing ratio sq  follow a moist adiabat, and the 

cloud top is located at the level of neutral buoyancy (LNB).  In addition, the cumulus 

clouds are assumed to dissolve immediately by mixing with the environmental air, 

imparting to it heat and moisture.  The moisture cycle in an air column which contains 

convection in Kuo schemes is illustrated in Fig. 14.9.  In the following, we will present 

the basic concept of the Kuo scheme. 

 The conservation equation of water vapor, (14.3.4), may be written in pressure 

coordinates, ignoring the detailed microphysical processes, and retaining only the vertical 

eddy flux of water vapor, 
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where c is the condensation rate per unit mass of air, e the evaporation rate, and ω  the 

vertical motion in the pressure coordinates.  Integrating (14.3.11) vertically from the 

surface ( sp ) to the top of the atmosphere ( 0=p ) leads to 
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where vM is the vertically integrated horizontal moisture convergence, 
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In the above equation, E and qvS  are the surface evaporation rate and the storage rate of 

water vapor, respectively, 

 1 ' 'v s
E q

g
ω⎡ ⎤= − ⎣ ⎦ , (14.3.14) 
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The relationship between the integrated net condensation and the precipitation rate can be 

obtained by considering the conservation of cloud water cq , 
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where CRP is the conversion rate of cloud water to precipitation.  Integrating (14.3.16) 

with respect to pressure gives 

 lql
p MSPdpec

g
s −+=∫ −0 )(1 , (14.3.17) 

where P  is the precipitation rate, qlS is the storage rate of liquid water and lM is the 

vertically integrated horizontal convergence of cloud water.  Substituting (14.3.17) into 

(14.3.12) yields 

 qlqvlv SSPEMM ++=++ . (14.3.18) 

Equation (14.3.18) describes the moisture budget in which the sources of water vapor and 

cloud water into a unit air column are balanced by the precipitation plus storage of water 

vapor and liquid water. If one assumes that the convergence of cloud water ( lM ) is much 

smaller compared to ( EMv + ), and the storage term of the water vapor is negligible, then 
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the net rainfall rate plus the storage rate of cloud water is equal to the sum of large-scale 

moisture convergence and evaporation, 

 ql vP S M E+ = + . (14.3.19) 

The above approximation is reasonably good over a relatively longer time scale, although 

substantial changes in the storage terms cannot be ignored at a short time scale. If the 

surface evaporation rate ( E ) is parameterized by the conventional bulk formula, then we 

have 

 )()(1
0 ssssds
p

vvt qqVCdpq
g

EMM s −+⋅∇−=+≡ ∫ ρV , (14.3.20) 

where tM is the moisture accession, sρ is the surface air density, dC the drag coefficient, 

sV  is the near surface wind speed, ssq  the saturation mixing ratio at the sea surface 

temperature and pressure, and sq  the near surface saturation mixing ratio. The cumulus 

convection in the Kuo schemes is driven primarily by the moisture convergence.   

 The large-scale equation of thermodynamics for potential temperature in pressure 

coordinates may be written as 

 ( ) 1 ' '( ) ( ) rL c e Q
t p p
θ ωθ ω θθ

π
⎛ ⎞∂ ∂ ∂

+ ∇ ⋅ + = − − +⎜ ⎟∂ ∂ ∂⎝ ⎠
V , (14.3.21) 

where L  is the latent heat of condensation for water vapor, rQ the radiative heating rate, 

and π  the Exner function as defined in (13.5.16).  The horizontal eddy flux of sensible 

heat is ignored in the above equation.  We may define the net cumulus heating as 
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which is part of the right hand side of (14.3.21).  Based on Kuo's (1965) original 

approach, taking the vertical integration of (14.3.22), neglecting the sensible heat flux 

term, and using (14.3.19) and (14.3.20) lead to 

 t
p

c gLMdpQs =∫0 . (14.3.23)  

 The vertical structure of cQ is assumed to be in the form of a relaxation toward a moist 

adiabat maθ , 
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θθπ )( −
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cQ , (14.3.24) 

where τ is a relaxation time that is potentially a function of x, y, and t, but not of p. In 

regions where 0<tM and maθθ > , cQ  is set to zero. From (14.3.24) and (14.3.23), the 

relaxation time may be estimated by the following equation, 

 ∫ −= sp
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t
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gLM 0 )(1 θθπτ . (14.3.25) 

Thus, the relaxation time is inversely proportional to the moisture accession. 

 The moisture convergence can be divided into tbM , which increases the humidity of 

the air column, and tMb)1( − , which is condensed and precipitate as rain (Kuo 1974).  

Normally, b is much less than 1 and should depend on the mean relative humidity of the 

air column 
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where cRH is a critical value of relative humidity and n is a positive exponent of order 1 

which may be empirically determined (Anthes 1977).  The modified form of the Kuo 

scheme is also known as the Anthes-Kuo scheme.  Kuo and Anthes (1984) found that the 

best agreement between observed and diagnosed rainfall rates is when n is between 2 and 

3 and cRH is between 0.25 and 0.50. An alternative method for estimating b is 

(Krishnamurti et al. 1980) 
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0
)(1 V . (14.3.27) 

 

 In the Arakawa-Schubert (1974) scheme, a spectrum of cloud types is considered and 

the scheme is coupled with a model of the mixed layer. Further, the large-scale forcing 

function involves horizontal and vertical advection, radiation, and surface fluxes of heat 

and moisture (rather than only large-scale moisture convergence as in Kuo schemes). 

 

c. Cumulus parameterization schemes for mesoscale models  

 One of the most challenging problems in mesoscale modeling is the parameterization 

of cumulus clouds. The conceptual basis for cumulus parameterization requires, in 

principle, the existence of a spectral gap between the scales being parameterized and 

those being resolved on the grid points.  The spectral gap ensures that all eddies have a 

time scale much smaller than the grid-scale motions, so that their integrated influence can 

be incorporated into a single time step.  For mesoscale models with grid resolution of 10 

to 50 km and time intervals in the order of several minutes, mesoscale circulations appear 

to be resolved reasonably well, but the models are still not fine enough to resolve 
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cumulus convective clouds.  In this situation, the convective scales and the resolvable 

scales are no longer as distinguishable as that assumed in the cumulus parameterization 

schemes adopted by large-scale models.  Thus, the traditional cumulus parameterization 

schemes, such as Kuo schemes and the Arakawa-Schubert scheme, are not suitable for 

mesoscale models. The success of cumulus parameterization in numerical simulations of 

mature hurricanes using 10-20 km grid resolution is due to the fact that under strong 

rotation, the local deformation radius can shrink enough to produce a long-lasting, 

inertially stable disturbance.  Thus, the time-scale separation requirement is met 

(Ooyama 1982). 

 Three approaches have been taken for the simulation of cumulus convection in 

mesoscale models (Molinari 1993): (1) the traditional approach, which utilizes cumulus 

parameterization, as those adopted by large-scale models, at convectively unstable grid 

points and explicit condensation at convectively stable grid points, (2) the grid explicit 

approach, which uses only explicit representations or bulk microphysics 

parameterization of microphysical processes regardless of stability, and (3) the hybrid 

approach, which parameterizes convectively unstable updrafts and downdrafts at 

convectively unstable grid points and also detrains a fraction of the parameterized cloud 

and precipitation particles to their respective grid-scale prediction equations. Due to the 

continuous advances in computer speed and memory, the grid explicit approach with 

microphysics parameterization schemes may become more applicable in resolving the 

cumulus parameterization problems in mesoscale models. In the following, we will 

briefly introduce some mesoscale cumulus parameterization schemes, such as the Kain-

Fritsch scheme and the Grell scheme. 
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 The Kain-Fritsch (KF) scheme (Kain and Fritsch 1993; Kain 2004) is a mass flux 

parameterization that uses the Lagrangian parcel method to estimate whether instability 

exists, whether any existing instability will become available for cloud development, and 

what the properties of any convective clouds might be.  The scheme involves three parts: 

(1) the convective trigger function, (2) the mass flux formulation, and (3) the closure 

assumptions.  The first part of the KF scheme is to identify potential source layers for 

convective clouds or updraft source layers (USLs). Beginning at the surface, vertically 

adjacent layers in the model are mixed until the depth of the mixed layer is at least 60 

hPa.  The combination of adjacent model layers composes the first potential USL which 

may be viewed as an “air parcel”. The mean thermodynamics characteristics of this 

mixed layer are computed along with the temperature and height of this “air parcel” at its 

lifting condensation level (LCL).  The potential of convective initiation is measured by 

LCLT T−  (T is the environmental temperature), which is typically negative indicating a 

negative buoyant air parcel.  Observations suggest that convective initiation tends to be 

favored by background vertical motion (Fritsch and Chappell 1980).  Thus, the parcel is 

assigned a temperature perturbation ( vvTδ ) linked to the magnitude of grid-resolved 

vertical motion, such as 

 
1/ 3

( )vv gT k w c zδ ⎡ ⎤= −⎣ ⎦ , (14.3.28) 

where k is a unit number with dimensions -1/3 1/3K cm s , gw is an approximate running-

mean grid-resolved vertical velocity ( -1cms ) at the LCL, and c(z) is a threshold vertical 

velocity given by 
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where -12cmsow =  and LCLz  is the height of LCL above the ground in m. Equation 

(14.3.29) will effectively eliminate most air parcels (mixed layer) as candidates for deep 

convection.  If LCL vvT T Tδ+ < , then this mixed layer is excluded for deep convection, the 

base of the USL is moved up one model level, and the above test is repeated for a new 

potential USL. Otherwise, the mixed layer or air parcel is allowed to proceed as a 

candidate for deep convection.  At this stage, the parcel is released at its LCL with its 

original temperature and moisture content and a vertical velocity derived from the 

perturbation temperature, such as 

 ( ) 1/ 2
1 1.1 /po LCL USL vvw z z T Tδ= + −⎡ ⎤⎣ ⎦ , (14.3.30) 

where USLz  is the height at the base of the USL.  The above equation yields initial vertical 

velocity for the air parcel up to several meters per second.  Above the LCL, parcel 

vertical velocity is estimated at each model level using the Lagrangian parcel method 

(e.g., Perkey and Kreitzberg 1993), including the effects of entrainment, detrainment, and 

water loading (Bechtold et al. 2001). If vertical velocity remains positive over a depth 

that exceeds a specified minimum cloud depth (typically 3-4 km), deep convection is 

activated using this USL. If deep convection is not activated, the base of the potential 

USL is moved up one model layer and the procedure is repeated until either the first 

suitable source layer is found or the sequential search has moved up above the lowest 300 

hPa of the atmosphere. The set of criteria described here gives the trigger function. Note 
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that the cloud depth is determined by the updraft model described in the mass flux 

formation which, in turn, determines whether the parameterization is activated. 

 The second part of the KF scheme is the mass flux formation. In this scheme, 

convective updrafts are represented using a steady-state entraining-detraining plume 

model, where both eθ and vq  are entrained and detrainted. Convective downdrafts are 

generated by evaporation of condensate that is produced within the updraft. A fraction of 

this total condensate is made available for evaporation within the downdraft, based on 

empirical formulas for precipitation efficiency as a function of vertical wind shear and 

cloud-base height. The downdraft is specified to start at the level of minimum *
eθ  in the 

cloud layer with a mixture of updraft and environmental air. It is moved downward in a 

Larangian sense, with a specified entrainment rate and a fixed relative humidity of 100% 

above cloud base and 90% below cloud base. When the downdraft is warmer than its 

environment, it is terminated and forced to detrain into the environment within and 

immediately above the termination level. The scheme also requires environmental mass 

fluxes to compensate for the upward and downward transports in updrafts and downdrafts 

so that there is no net convective mass flux at any level in the column. The third part of 

the KF scheme is the closure assumptions. The KF scheme rearranges mass in a column 

using the updraft, downdraft, and environmental mass fluxes until at least 90% of the 

CAPE is removed. CAPE is computed in the traditional way (see Ch. 7) and is removed 

by the combined effecs of lowering eθ in the USL and warming the environment aloft.  

The convective time scale, or relaxation period ( cτ ), is based on the advective time scale 

in the cloud layer, which has upper and lower limits given as 0.5 1ch hτ≤ ≤ . The scheme 
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feeds back convective tendencies of temperature, water vapor mixing ratio, and cloud 

water mixing ratio.   

 Another widely adopted cumulus parameterization scheme developed mainly for 

mesoscale models is the Grell scheme (Grell 1993). The key features of the Grell scheme 

are (Seaman 1999): (a) deep convective clouds are all of one size; (b) the Arakawa-

Schubert (1974) cloud work function was adopted for its closure, but this was later 

changed to use a CAPE closure, similar to that in Kain-Fritsch scheme; (c) no lateral 

mixing (i.e. no entrainment or detrainment) except at the levels of origin or termination 

of updrafts and downdrafts, thus making mass flux constant with height; and (d) it is not 

necessary to assume that the fractional area coverage of updrafts and downdrafts in the 

grid column is small since there is no lateral mixing. The absence of lateral mixing 

allows the scheme to operate relatively easier at finer scales, although some degree of 

scale separation is still important.  The Grell scheme has been modified, based on some 

features developed in the Kain-Fritsch scheme. The advantages of the Grell scheme are 

that it includes effects of downdrafts and is well adapted for grids as fine as 10 to 12 km.   

 

14.4 Parameterizations of radiative transfer processes 

14.4.1 Introduction  

 Solar radiation is a major driving force of the atmospheric motion. The magnitude of 

radiative warming/cooling depends on many factors, including temperature, clouds, 

aerosols, water vapor, carbon dioxide, and ozone.  Radiation is also the primary force for 

the soil model in terms of the surface energy budget. Figure 14.10 illustrates the radiative 

transfer processes in the Earth-atmosphere system, which include shortwave and 
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longwave reflection, transmission, and absorption/emission. The radiative transfer 

processes are very complex and do not allow mesoscale modelers to make detailed 

adjustments due to limitations of computing time. Thus, similar to PBL and moist 

processes, the radiative transfer processes are parameterized in mesoscale models. The 

purpose of this section is to introduce the basic concepts of the parameterization of 

radiative transfer processes for mesoscale and numerical weather prediction models. 

Detailed discussions on detailed radiative transfer processes and parameterizations can be 

found in advanced textbooks (e.g., Liou 1992, 2002). 

 The objective of parameterizing the atmospheric radiative transfer processes in a 

numerical model is to provide a simple, accurate and fast calculation of the total radiative 

flux profile within the atmosphere. The fast, simple calculation includes (i) the total 

radiative flux at the surface to calculate the surface energy balance, and (ii) the vertical 

radiative flux divergence to calculate the radiative warming and cooling rates of an 

atmospheric volume. The parameterization commonly includes the combined effects of 

absorption/emission and scattering by the radiatively active trace-gases of 2H O , 2CO , 

and 3O , together with cloud and haze particles.   

 Different levels of approximation have also been adopted, which depend on the 

desired accuracy for representing the type of interactions between radiation and 

dynamics. The factors often considered in selecting the parameterization include 

(Stephens 1984): (a) radiation may simultaneously affect the dynamics in several 

different ways, and the accuracy required of the radiation computations depends on 

which process is important to the given dynamical problem. (b) The dynamics respond to 

the total heating fields, which include radiative, latent and sensible heating.  The heating 
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components are not always independent of each other and, as a result, radiation may 

influence the dynamics in a complex nonlinear manner that is often difficult to assess a 

priori. (c) The radiative warming and cooling may vary considerably in response to 

variations in temperature, which are caused by various dynamical factors. 

 Atmospheric radiation covers a broad spectrum of electromagnetic waves.  As 

depicted in Fig. 14.11, the sun radiates approximately at a blackbody temperature of 6000 

K, which spans the entire spectrum of the electromagnetic waves, but the radiation 

outside the range 0.2 − 4.0 μm is negligible and referred to as the shortwave radiation. 

Likewise, the earth emits radiation at a blackbody temperature of about 250 K, which 

covers the entire spectrum of the the electromagnetic waves, but the radiation outside the 

range 4 − 200 μm is negligible, and is referred to as the longwave radiation. The 

blackbody emission of electromagnetic radiation for a particular wavelength λ  and 

temperature T may be derived, 
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where νB is called the Planck function, h = 6.6262 x 10-34 J s is the Planck constant, K = 

1.380 x 10-23 J K-1 is the Boltzmann's constant, ν  is the wave number ( λν /1= , λ is the 

wavelength), and c is the speed of light. The total radiative flux, F, emiting at a 

blackbody temperature T may be derived by integrating (14.4.1) over the entire spectral 

range and angles, 

 4TF σ= , (14.4.2) 

where 8 -2 -45.67032x10 Wm Kσ −=  is the Stefan-Boltzmann constant.  The above equation 

is also known as the Stefan-Boltzmann law. However, the earth has an atmosphere which 
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contains molecules and particulates. Thus, it does not behave as a blackbody, which leads 

to 

 4TF εσ= , (14.4.3) 

where ε denotes the emittance. The emittance, ranging from 0 to 1, represents the ratio of 

the flux emitted by a graybody to that by a blackbody at the same temperature. Satisfying 

the condition of local thermal equilibrium, the emitance of a medium is equal to its 

absorptance, which is also known as Kirchhoff's law of thermal radiation. 

 The net radiation heating may be written as, 
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where t∂∂ /θ  has also been written as tT ∂∂ / in the literature, FN is the difference 

between downward ( ↓F ) and upward ( ↑F ) fluxes (in W m-2) and dzdFN /  is the vertical 

flux divergence.  

 When electromagnetic radiation traverses a layer in the atmosphere, it can be 

transmitted, absorbed, or reflected. Based on the conservation of energy, it can be derived 

that 

 1T A Rν ν ν+ + = , (14.4.5) 

where ,  ,  and T A Rν ν ν are transmissivity, absorptivity, and reflectivity, respectively. A 

pencil of radiation traversing a medium may be weakened by extinction (i.e., scattering + 

absorption) of the material, strengthened by emission of the material, or undergo multiple 

scattering from all other directions into the pencil (Liou 2002). Thus, the change of the 

intensity of radiation traversing a medium may be expressed by 
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where νk denotes the extinction coefficient; aρ , the density of media; Iv, the incident 

radiance; )(TBν , the thermal emission; and νJ , the source of radiation from scattering 

into the line segment ds (Fig. 14.12). In the absence of emission and scattering, the Beer-

Bouger-Lambert law can be derived, which states that the radiant intensity trasversing a 

homogeneous extinction medium decreases exponentially as ukII ov νν −= exp( ), where 

u is the path length. 

 

14.4.2 Longwave radiation 

a. Clear atmosphere 

 In a clear air atmosphere, the scattering of longwave radiation ( νJ ) may be neglected 

compared with the absorption and emission (Liou 2002). More specifically, the general 

problem of parameterizing the longwave radiative transfer in the clear air requires the 

suitable treatment of absorption and simultaneous emission by the ozone band (9.6 μm), 

the rotation and vibration bands of water vapor, the continuum absorption in the 

atmospheric window (between 8 μm and 14 μm) and the absorption by the carbon 

dioxide band (15 μm), which overlaps a portion of the rotation band (Stephens 1984).   

 By considering a monochromatic radiation of wavelength λ  entering at angle θ  

(Fig. 14.12) from the vertical direction across a plane sheet of material of distance ds and 

vertical distance dz, (14.4.6) becomes 
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where 

 ∫
∞

=
z a dzk  ρτ ν , (14.4.8) 

is the normal optical thickness (or simply optical thickness), )cos( θμ = is the cosine of 

the zenith angle, and νdI /dz is the intensity change in the vertical direction. In order to 

solve the first-order differential equation, (14.4.7), for both upward and downward 

components for an atmosphere with a total optical thickness of *τ , two boundary 

conditions are required at the surface and the top of the atmosphere. For the atmospheric 

heating rate )/( t∂∂θ calculations, the required quantities are the upward and downward 

radiative fluxes ( ↓↑ FF  and ), as expressed in (14.4.4). The radiative fluxes at a particular 

wave frequency ( ↓↑
νν FF  and ) can be calculated by taking the integration of the intensities 

of radiation ( ↓↑
νν II  and ) with respect to μ . The upward and downward radiative fluxes 

( ↓↑ FF  and ) can then be obtained by taking integrations of ↓↑
νν FF  and , respectively, from 

μ = 0 to 1.   

 Based on above equations with the absence of scattering, the longwave radiative flux 

may be derived to be  
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where )(zF ↑ and )(zF ↓ are the upward and downward longwave radiative flux through 

level z, νB  is the Planck function in terms of wave frequency and the diffusion 

transmission function, f
ντ , is defined by the hemispheric integral 

 ∫=
1

0
),',(2)',( μμμττ νν dzzzzf , (14.4.11) 

and   
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where ),( Tpkν is the absorption coefficient and u is the absorption or optical path from 

z  to 'z . Note that u should be the mass if the unit k is in the form fraction/mass. The 

transmission function f
ντ is often referred to as the slab transmission function, as 

described in (14.4.11). The above equations may be combined and differentiated directly 

to obtain an equation of flux divergence, and thus of radiative cooling. However, for 

aplications in a mesoscale or general circulation model, these fluxes may be calculated 

numerically at each model level, followed by the evaluation of the flux divergence for the 

layer between two levels. The evaluation of flux divergence between two levels  

automatically supplies fluxes at those levels where a radiation budget is required, such as 

at the earth surface, the tropopause or at the model top. 

 There are three integrals involved in the calculations of longwave flux, which include 

(14.4.11), the inner integrations of (14.4.9) and (14.4.10) over all atmospheric layers 

( 'dz ), and the outer integrations of (14.4.9) and (14.4.10) over all spectral intervals ( νd ).  

The integration of (14.4.11) may be approximated by (Stephens 1984) 
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 )/1 ,' ,()' ,( βττ νν zzzzf ∝ ,  (14.4.13) 

where 66.1=β  and is known as the diffusivity factor. Basically, this approximation 

means the diffuse transmission can be approximated by intensity transmission with an 

angle of )/1(cos 1 β− . The integration of (14.4.9) and (14.4.10) over 'dz  may be 

approximated by a finite difference or other numerical method in the vertical direction.   

Thus, the objective of parameterization of longwave radiation in a clear sky is to find 

suitable approximations of integration over 'z and ν  in (14.4.9) and (14.4.10) and the 

integration over μ in (14.4.1).    

 The difficulties in the integration over optical path in (14.4.12) are due to the fact 

that the absorption coefficient νk  is a function of both pressure and temperature, and 

most absorption data are collected in the laboratory at constant pressure and temperature, 

which are not necessarily applicable to the real atmosphere. Two commonly adopted 

approximations are (a) the one-parameter scaling approximation (Goody 1964a; Chou 

and Arking 1980) and (b) the two-parameter approximation (Goody 1964b). The one-

parameter scaling approximation method is able to provide a reasonable approximation to 

the problem of absorption along nonhomogeneous paths. Difficulties arise when one 

attempts to isolate the errors in the infrared cooling rate, which are likely to be larger 

than those of the two-parameter approximation method, especially in the upper 

atmosphere.   

 The problem inherent in simplifying the integration over frequency in (14.4.9) and 

(14.4.10) is more complicated than the rather simple and obvious task of averaging 

νk over some broad interval νΔ . The finest frequency scale of absorption, that of an 
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individual line, is described by a simple analytical function given by the Lorenz line 

absorption profile for an altitude below about 40 km (e.g., Liou 2002). Unfortunately a 

single absorbing line cannot be considered in isolation from neighboring lines, and it is 

not meaningful to average νk over a group of lines in a simple linear manner because νk  

is the sum of the contributions to the absorption coefficient at a given frequency from all 

lines.  The properties of the single absorption line leads to the concept of a band model, 

which enables the averaging of the absorption properties for bands of lines, such as line 

strength, separation and position that are specified by well-defined statistical 

relationships.  

 An alternative approach is the k (absorption coefficient)-distribution method, which 

makes use of the fact that for a homogeneous atmosphere, transmission within a 

relatively wide spectral interval depends only on the fraction of the interval that is 

associated with a particular value of k. The k-distribution method has been demonstrated 

to be faster and more accurate than the band model (e.g., Arking and Grossman 1972; 

Chou and Arking 1980). In addition, treating molecular absorption and the scattering by 

cloud droplets in a self-consistent fashion in the k distribution method is straightforward. 

Like other band-model methods, the k-distribution method was developed for 

homogeneous atmospheres. For nonhomogeneous atmospheres, the one-parameter 

scaling approximation is often adopted in the integration of (14.4.12) over optical path, 

which may lead to large deviation from results computed from line-by-line (LBL) 

methods (e.g. Rothman et al. 1987). In order to overcome this problem, the correlated k-

distribution method has been proposed (e.g. Fu and Liou 1992; Mlawer et al. 1997). 
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More details in recent developments of the k distribution method can be found in Kratz et 

al. (1998) and Chou et al. (1999). 

 

b. Cloudy atmosphere  

 The optical path length for infrared or longwave radiation is strongly influenced by 

the presence of clouds. Mesoscale models have often treated clouds as blackbodies in the 

longwave portion of the spectrum, where no infrared radiation is transmitted through the 

cloud. Although more advanced schemes have been developed, the parameterization for 

longwave radiation within a water cloud can be understood through the following scheme 

(Stephens 1978a): 

 4]1)[()( cbbb TzFzF σεε +−= ↑↑ , and (14.4.14a) 

 4]1)[()( cttt TzFzF σεε +−= ↓↓ , (14.4.14b) 

where )( bzF ↑ and )( tzF ↓ are the clear-air radiative flux at the cloud base ( bz ) and cloud 

top ( tz ), respectively, and cT is the cloud temperature. The cloud effective emissivity 

),( zzbbε  and ),( zzttε can be obtained by solving (14.4.14) using a detailed radiational 

model with eight cloud types in a U.S. standard atmosphere to obtain )( bzF ↑ and )( tzF ↓  

(Stephens 1978b). Liou and Ou (1981) also proposed a parametarization of longwave 

radiative transfer in the presence of a semitransparent cloud layer. They used a model 

with five broadband emissivity values to represent the five major absorption regions in 

the infrared spectrum. For application to a mesoscale model, (14.4.14) can be used when 

a grid volume is saturated with clouds (Pielke 2002).   
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14.4.3 Shortwave radiation 

a. Clear atmosphere 

 The distribution of electromagnetic radiation emitted by the sun is approximately as 

blackbody radiation for a temperature of about 6000 K. The spectral distribution of solar 

or shortwave radiation received at sea level through a cloud free and haze free 

atmosphere is shown in Fig. 14.11. As can be seen in the figure, the primary absorptions 

in a clear atmosphere are by: (1) the ozone in the visible ( mm μλμ 7.05.0 ≤≤ ) and 

ultraviolet ( mμλ 3.0≤ ) spectra; and (2) the water vapor in the near infrared (IR) 

spectrum ( mm μλμ 0.47.0 ≤≤ ). Thus, mμλ 7.0= is a natural division of these two 

absorbers. The major absorption bands are shaded in Fig. 14.11.  The absorptions by 

2O and 2CO are substantially less than that of ozone and water vapor and their 

contributions can be ignored. The solar irradiance is composed by direct irradiance and 

diffuse irradiance. The diffuse irradiance is the irradiance observed at a point from 

directions other than the line of propagation, while the direct irradiance is the irradiance 

observed at a point without being absorbed or scattered from its line of propagation. 

 In the absence of scattering, the downward shortwave irradiance through level z for a 

collimated beam of solar irradiance may be derived, 

 ∫
∞↓ =

0
),(),( νμτμμ νν dzSzF ooooosw , (14.4.15) 

where ( , )sw oF z μ↓  is the downward irradiance through level z  for a collimated beam of 

solar irradiance ( νoS ) at the top of the atmosphere, inclined at a zenith angle oθ (or 

oo θμ cos= ). The monochromatic transmittance function can be calculated from 
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μτ ν
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Calculation of the downward shortwave radiation (14.4.15) is less complicated than its 

longwave counterpart, (14.4.10) since it is not necessary to consider the complications 

imparted by simultaneous absorption and emission from layer to layer (Stephens 1984).  

The only variable that remains to be defined is the mean transmission function 

 ( )1( , ) exp  ( )o o r o vz
z m k du dν ν

τ μ μ ν
ν

∞

Δ
= −

Δ ∫ ∫ , (14.4.17) 

where oμ/1 is replaced by the mass factor )( orm μ  in (14.4.16), which is identical to 

oμ/1 except for larger solar zenith angle. Empirical formulae for )( orm μ  have been 

proposed. For example, Rodgers (1967) proposed that 2/12 )11224(35 −+= oorm μμ  for 

ozone, otherwise orm μ/1= . Thus, the clear-sky downward solar flux, (14.4.15), 

transmitted to level z along oθ can be approximated by 

 ∑
=

↓ =
N

i
ioiosw uSF

1
)(ντμ . (14.4.18) 

 The approach given in (14.4.18) is called the discrete band approach. The subscript i 

denotes the ith spectral interval. The upward solar flux received at level z by reflection 

from the earth surface may be calculated in a similar fashion, 

 ∑
=

↑ =
N

i
ioigiosw uSF

1

*)(νταμ , (14.4.19)  

where giα is the surface albedo for the ith spectral interval. The path length *u  is the 

effective total absorber amount traversed by the diffusely reflected radiation. Some useful 

empirical formulae have been proposed for estimating *u  (e.g., Lacis and Hansen 1974). 
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Note that the mean transmittance is commonly defined as a convolution of the 

transmission function and the extraterrestrial flux νoS .  The mean transmittance function 

over the entire solar spectrum may be calculated by 

 ∫
∞

=
0

),(1),( νμτμτ νν dzS
S

z ooo
o

oo , (14.4.20) 

in which case the downward solar flux at level z is defined by 

 ),()( oooo zSzS μτμ=− . (14.4.21) 

Using (14.4.20) and (14.4.21) to calculate the downward solar flux is also called the 

broadband approach, and has been used for calculating solar fluxes within the 

atmosphere. However, the broadband approach has hardly been used recently because 

Rayleigh scattering is important in clear atmospheres and is included in nearly all 

models. Furthermore, different values of land surface reflectivity are used for different 

spectral bands in most of the current models, which requires the division of the solar 

spectrum into multiple bands.  

 In the lower atmosphere, the absorption of solar radiation by water vapor is the major 

source of solar heating. As mentioned earlier, the absorption of water vapor is 

concentrated in the near IR spectrum, 0.7 μm 4.0 μmλ≤ ≤ (see Fig. 14.11). In order to 

resolve the water vapor absorption and to apply Beer’s law, the spectrum has to be 

divided into about a half million intervals (Chou 1992). The difficulty in parameterizing 

the water vapor absorption is due to the fact that: (1) the absorption fluctuates strongly 

within very narrow spectral intervals, (2) the absorption is complicated by the pressure 

and temperature dependencies, and (3) the absorption spectrum of water vapor overlaps 

with that of liquid water absorption. Ideally, line-by-line methods (e.g. Rothman et al. 
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1987) are required for achieving a high degree of accuracy in solar flux calculation, 

although it is computationally very expensive. In order to reduce the computational 

burden, there are numerous methods being proposed for parameterizing the absorption 

functions of the water vapor, such as the simple parameterization of the broadband 

absorption functions (e.g., Chou 1986; Lacis and Hansen 1974). In order to improve the 

accuracy, the k-distribution method has been proposed and applied in studies such as 

Chou (1986), where it was found that the solar near-infrared fluxes could be accurately 

computed with a maximum of nine values of k, instead of half a million spectral 

intervals, in each of the three near IR bands.  

 In the ultraviolet (UV) and visible spectrum ( 0.7μmλ < ), the primary absorption of 

the solar radiation is due to ozone. The absorption spectrum of ozone is continuous in 

nature and requires less spectral intervals than the near-infrared spectrum for accurate 

calculations of the solar radiation. However, it is desirable to reduce the number of 

spectral intervals due to the relatively wide range of the absorption spectrum of ozone.  

Molecular scattering is significant at the absorption spectrum of ozone, but fortunately, 

they do not overlap much in high altitudes. The ozone absorption occurs in the higher 

atmosphere, while the molecular scattering occurs in the lower atmosphere.   Again, 

many simple parameterizations of the broadband absorption functions have been 

proposed. Chou (1986) divided the spectrum between 0.175 μm and 0.7 μm into 8 

intervals and used a single mean value of k for each interval.  When there are more than 

one absorber and scatterer in an atmospheric layer, the effective optical parameters are 

required for flux computation (Tsay et al. 1989). 
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b. Cloudy atmosphere 

 The interactions of clouds with solar radiation are extremely complicated since the 

attenuation of solar radiation includes scattering and absorption by wide spectrum of 

cloud droplets and ice crystals.  Thus, in addition to making proper representation of 

solar radiative processes, one also has to represent or parameterize microphysical 

processes properly.  In the absence of emission, the basic equation governing the 

intensity of solar radiation appropriate to a cloud medium may be written in the form 

 oepSdIpI
d

dI
o

oo μτμμτ
π

μμτμμτ
π

ωμτ
τ

μτμ /1

1
),,(

4
')',()',,(

4

~
),(),( −

−
++−= ∫ ,  

  (14.4.22) 

where τ  is the optical thickness, oω~ is the single-scattering albedo, p is the scattering 

phase function, ),( μτI is the radiance along the angle μ )cos( θ=  and oS is the solar flux 

associated with a collimated beam incident on the cloud top.  The optical parameters are 

functions of frequency, but for simplicity they are not shown in the equation. The 

difference between (14.4.22) and the flux equations of long-wave radiation, such as 

(14.4.6), is as follows (Stephens 1984): First, the optical thickness now includes the 

contributions from scattering ( sτ ) and absorption ( aτ ) by cloud droplets, and by the 

intervening gas ( gτ ), 

 gas ττττ ++= . (14.4.23) 

Second, the single-scattering albedo is included in (14.4.22), which is a ratio of the 

scattering optical thickness to the total optical thickness, i.e.,  

 ττω /~
so = .   (14.4.24) 
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Thus, 1~ =oω  for a nonabsorbing cloud and 0~ =oω  if the scattering is negligible. Third, 

the intensity of solar radiation includes the scattering phase function )',,( μμτp , which 

characterizes the angular distribution of the scattered radiation field. For spherical cloud 

droplets, this function exhibits an intense peak in the forward direction and produces 

rainbow and glory effects in the backward direction (Liou 2002). The most commonly 

adopted formula for the scattering phase function is (Henyey and Greenstein 1941), 

 
'21

1)',,( 2

2

μμ
μμτ

gg
gp

−+
−

= , (14.4.25) 

where g is the asymmetry factor, which is defined as 

 ∫−
=

1

1
)',,(

2
1 μμμμτ dpg . (14.4.26) 

Note that g varies from –1 for complete backscattering, to 0 for isotropic scattering, and 

to 1 for forward scattering.   

 In order to calculate the intensity of solar radiation with the presence of clouds, one 

needs to solve (14.4.22), which can be viewed in terms of three key properties: layer 

optical thickness (τ ), layer single-scattering albedo ( oω~ ), and asymmetric parameter 

( g ).   Due to the above complications, it is necessary to make some approximations for 

solving (14.4.22). After some manipulation, (14.4.22) may be approximated by two 

simultaneous differential equations and lead to the Eddington approximation, two-stream 

approximation, or to four first-order differential equations and lead to the four-stream 

approximation (see reviews in Liou 2002 and Stephens et al. 2001). Fu et al. (1997) have 

proposed a hybrid two-stream and four-stream method, which has been adopted by some 

mesoscale models.   
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Problems 

14.1 Derive the mean equations of (14.1.3)-(14.1.7) by applying the Reynolds 

averaging. 

14.2 Derive (14.2.16). 

14.3 (a) Derive (14.2.17). (Hint: you need to integrate the reduced time-independent 

equation of (14.1.3)-(14.1.4) from surface at z = 0 to the top of the mixed layer, z = 

h) (b) Estimate V for a mixed layer of -110 msgu = , 31.5x10dC −= , 410−=f s-1, 

and h = 1 km. 

14.4 Obtain the solution (14.2.26) from (14.2.25) and the boundary conditions 

described in the text.   

14.5 Derive (14.2.30). 

14.6 Derive (14.3.18) by neglecting the sensible heat flux term in (14.3.16). 
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Table captions  

Table 14.1: Key to Fig. 14.6. (Adapted after Lin, Farley, and Orville 1983) 

 

Figure captions 

Fig. 14.1: Schematic illustration of subgrid scale values of vertical velocity w’ ( -1cms ), 

potential temperature θ’ (K), and the subgrid scale covariance w’θ’ (K cm s-1).  In this 

example, the grid averaged value of vertical motion is required to be approximately 0 

(i.e. 0=w ), and 299.5Kθ =  is used.  Both grid value averages are assumed to be 

constant over xΔ .  The grid-averaged subgrid-scale correlation ''θw  is equal to 

-16.9 cm K s . (Adapted after Pielke 2002)   

Fig. 14.2: Typical convective boundary layer profiles of (a) mean virtual potential 

temperature, (b) specific humidity, (c) wind speed (V and gV  denote mean wind 

speed and geostrophic wind speed respectively), (d) vertical heat flux, (e) vertical 

moisture flux, and (f) vertical momentum flux.  (Adapted after Driedonks and 

Tennekes 1984) 

Fig. 14.3: Typical stable boundary layer (SBL) profiles of (a) mean temperature, (b) 

potential temperature, (c) wind speed, and (d) specific humidity. (Adapted after Stull 

1988) 

Fig. 14.4: A sketch of the wind vectors of the Ekman spiral (14.2.26).  The arrows show 

the wind vectors at non-dimensional height 3/2 ,2/ ,3/ ,6/ ππππγ =z , where γ is 

defined in (14.2.26). (Adapted after Batchelor 1967) 
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Fig. 14.5: Comparison of predictions of the virtual potential temperature profile using (a) 

TKE closure scheme (Adapted after Sun and Chang 1986) and (b) third-order closure 

scheme (Adapted after André et al. 1978) for Day 33 of the Wangara experiment 

against (c) observational data (Adapted after André et al. 1978).  The local times are 

denoted by the numbers adjacent to the curves. 

Fig. 14.6: A sketch of cloud microphysical processes in a bulk microphysics 

parameterization (LFO) scheme including ice phase.  Meanings of the production 

terms (i.e., P terms) can be found in Table 14.1.  (Adapted after Lin, Farley, and 

Orville 1983; Orville and Kopp 1977) 

Fig. 14.7: Simulations of tropical cyclones using the LFO scheme (Fig. 14.6). Radius-

height distributions of (a) vertical velocity (contours are 0, ± 1, 2.5, and 4 ms-1; areas 

greater than 4 ms-1 are dark-shaded, and areas of downward motion are light-shaded.), 

and (b) tangential wind velocity (contours: 0, ± 5 , 10 , 15 , 20 and 25 ms-1; dark-

shaded for higher than  25 ms-1) for the warm-rain numerical simulation at 22 h.  (c) 

and (d) are the same as (a) and (b), respectively, but for the ice-phase simulation at 36 

h.  The dashed lines in (c) and (d) denote the melting level.  (Adapted after Lord et al. 

1984)    

Fig. 14.8: Vertical profiles of virtual potential temperature ( vθ ) for four tropical 

soundings.  AMEX 5 is a composite sounding from the late decay stages of four 

cloud clusters (dashed), while PRC mean (thin line) is a six-week mean sounding 

from a ship during the Australian Monsoon Experiment (AMEX).  GATE ST 6 (thick 

line) is a composite for the decay stages of eight GATE cloud clusters, and GATE ph 
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3 (dotted) is the phase III mean for the GATE array. (Adapted after Frank and 

Molinari 1993) 

Fig. 14.9: A schematic for moisture cycle in a column which contains convection in Kuo 

schemes. See text for details.  (Adapted from Anthes 1977) 

Fig. 14.10: Illustration of global energy balance through radiative transfer processes in 

the Earth-atmosphere system, based on data obtained from NASA Earth Observing 

System and various published model and empirical estimates.  (Courtesy of Dr. S.-C. 

Tsay)  

Fig. 14.11: Spectral energy curves of solar (shortwave) and terrestrial (longwave) 

radiation observed, as well as modeled, under cloud-free conditions at sea level and at 

the top of atmosphere (after Tsay et al. 1989).  The dark (solar) and dip (terrestrial) 

areas depict radiatively active gaseous absorption and emission bands while the 

shaded area represents Rayleigh and aerosol scattering effects. (Adapted after Tsay et 

al. 1989) 

Fig. 14.12: A schematic illustration of radiant intensity attenuated by scattering and/or 

absorbing media between ds (= secθ dz). 

  


