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ABSTRACT

In this study, it is found that the discrepancies among earlier studies of severe downslope windstorms are
caused by the use of the critical level height (zc), instead of the low-level uniform flow–layer depth (z1), as an
indicator to determine the optimal conditions for the occurrence of high-drag states. It is determined that once
the wave breaking occurs, it induces a critical level and establishes a flow configuration favorable for wave
ducting in the lower uniform wind layer, which determines the phase of reflected waves.

Flow regimes of high- and low-drag states for a two-dimensional, nonrotating flow with uniform static stability
and a basic-state critical level over a mountain were also determined as functions of nondimensional mountain
height (h̃), Richardson number (Ri), and nondimensional z1 in the terrain-following coordinates ( ). The authorss̃1

found that 1) the critical h̃ for high-drag state increases as Ri increases when is fixed, 2) the critical h̃ fors̃1

high-drag state increases as increases from 0.175 1 n to 1.175 1 n when Ri is fixed, and 3) the low-levels̃1

response repeats periodically at one vertical wavelength. It was found that the nonlinear and critical level effects
make the selection of high-drag states ( 5 0.175 1 n) from the linear wave duct modes ( 5 0.175 1 n/2).s̃ s̃1 1

If a very stable layer is induced above , then the linear wave duct mode tends to be suppressed and the flows̃1

cannot develop into a high-drag state because the wave-ducting structure is destroyed. On the other hand, if a
strong unstable layer is induced above s1, then the linear wave duct mode may further develop into a high-drag
state.

Therefore, it is proposed that the development of a high-drag or severe wind state is supported by the nonlinear
wave-ducting mechanism, whereas the high-drag state at the mature stage is maintained by the hydraulic mech-
anism as proposed by some earlier studies. It was found that nonlinearity plays an essential role in the downward
and downstream expansion of the turbulent mixing region during the development stage of a severe downslope
windstorm, which forces the fluid below this region to accelerate and propagate downstream as a hydraulic
jump.

1. Introduction

Severe downslope windstorms over the lee of a moun-
tain ridge have been observed in various places around
the world, such as the chinook over the Rocky Moun-
tains, the foehn over the Alps, the bora over the Yu-
goslavian coastal mountain range, and the zonda in Ar-
gentina. One well-documented case is the 11 January
1972 windstorm that occurred in Boulder, Colorado (Lil-
ly and Zipser 1972; Lilly 1978). Intense and damaging
surface winds arise in the lee of mountains when these
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low-level waves attain large amplitude (Klemp and Lilly
1975). The dynamics of severe downslope windstorms
has been studied extensively in the last three decades.
Three major mechanisms have been proposed to explain
the formation of severe downslope windstorms: 1) the
partial reflection mechanism (Klemp and Lilly 1975),
2) the resonant amplification mechanism (Peltier and
Clark 1979, 1980; Clark and Peltier 1984, hereafter
CP84), and 3) the hydraulic mechanism (Smith 1985,
hereafter S85). Predictions of S85’s theory have been
confirmed by numerical model simulations (Durran
1986; Durran and Klemp 1987, hereafter DK87; Bac-
meister and Pierrehumbert 1988, hereafter BP88) and
by tank experiments (Rottman and Smith 1989).

Based on linear, hydrostatic mountain wave theories,
Klemp and Lilly (1975) proposed that strong amplifi-
cation of severe downslope winds is associated with the
optimal superposition of upward- and downward-prop-
agating waves. The downward-propagating waves are
produced by partial reflection from interfaces of a mul-
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tilayered atmosphere. A low-level stable layer and the
partial reflection from the tropopause often play im-
portant roles in generating large-amplitude waves. They
found that an optimal tuning occurs when the tropopause
is located at one-half vertical wavelength (½l) above
the ground. However, the wave shift and reflection co-
efficient for wave resonance predicted by their linear
theory becomes less accurate for flow over a finite-am-
plitude mountain.

From nonlinear numerical model simulations, Peltier
and Clark (1979, 1983) found that a high-drag or severe
wind state may be established after the upward-propa-
gating mountain waves break. The wave-breaking re-
gion is characterized by strong turbulent mixing, with
a local wind reversal on top of it. This wind reversal
level is also called the ‘‘wave-induced critical level’’ by
them. Note that critical level is defined as the level at
which the mean wind speed coincides with the phase
speed of the wave. For a stationary mountain wave, the
critical level coincides with the wind reversal level be-
cause the phase speed there is zero. They proposed that
the wavebreaking region aloft acts as an internal bound-
ary that reflects the upward-propagating waves back to
the ground and produces the high-drag state through
partial resonance with the upward-propagating moun-
tain waves. In a way this is roughly parallel to Klemp
and Lilly’s partial reflection mechanism, although the
nonlinearity has been included in Peltier and Clark’s
model and the wave-induced critical level serves as the
reflecting boundary. Peltier and Clark (1983) suggested
that the severe wind state will develop if the critical
level is located at a height of (¾ 1 n/2)l, where n 5
1, 2, 3, . . . and l 5 2pU/N is the hydrostatic vertical
wavelength and U and N are wind speed and Brunt–
Väisälä frequency. They then conducted a series of nu-
merical experiments with the critical level located at
different heights to investigate the mechanisms of severe
downslope windstorms. Later, Clark and Peltier (1984,
denoted as CP84 hereafter) proposed that there is no
dependence of the initial wave-breaking height on non-
dimensional mountain height; that is, it always occurs
near ¾l. They then claimed that these results strongly
support their resonance theory.

Based on Long’s (1953) nonlinear theory for uniform
flow over a finite-amplitude mountain, S85 developed
a mathematical theory of the severe wind state. This
theory assumes that the density of the fluid in between
the divided streamlines is uniform, and above the upper
dividing streamline the fluid is essentially quiescent.
This assumption is based on the observational and nu-
merical experimental evidence that during severe down-
slope windstorms, a large region of well-mixed, slow
turbulent air develops in the middle and upper tropo-
sphere while strong winds plunge underneath. He pro-
posed that the severe downslope wind state occurs due
to the interaction between a strong smoothly stratified
flow and this deep turbulently mixed ‘‘dead’’ region.
This mechanism is also called the hydraulic mechanism

because the flow structure mimics the classical one- or
two-fluid hydraulic model (e.g., Long 1954; Houghton
and Kasahara 1968). In contradiction with CP84, this
theory predicted that the severe wind state exists over
the entire range of critical level height between (¼ 1
n)l to (¾ 1 n)l. In addition, the critical level for a
severe wind state depends on the nondimensional moun-
tain height and its height is an intrinsic property of the
severe wind configuration. DK87 and BP88 have per-
formed a series of numerical experiments and confirmed
Smith’s theory (S85). Smith’s theory appears to be able
to accurately predict the altitude of the turbulent air, the
strength of the downslope winds, and the mountain drag,
and thus has significantly advanced our understanding
of the dynamics of severe downslope windstorms. How-
ever, S85’s theory is primarily a consistency analysis of
a severe wind configuration and provides little help in
making prediction of when the severe wind state will
occur (S85).

Although the wave-breaking height ( 5 ¾ 1 n/2) isz̃
different from that predicted by S85’s theory, it may
represent the wave-breaking level at a different stage.
Based on a weakly nonlinear theory, Grimshaw and
Smyth (1986) showed that the initiation of a high-drag
transitional flow begins with linear resonance. In ad-
dition, Lin and Wang (1996) showed numerically that
the initial overturning level in a two-dimensional, non-
rotating, uniform flow over a mountain ridge is almost
equal to ¾l, which is consistent with that predicted by
CP84’s linear resonance theory and by nonlinear nu-
merical models (e.g., Laprise and Peltier 1989b). Thus,
one may hypothesize that the critical level height for a
severe wind state to exist starts from the wave-breaking
level at early stage but is modified by the nonlinearity
when the flow develops into a high-drag state. In other
words, at the early stage of severe wind development,
the flow is dominated by the nonlinear wave-ducting
mechanism, whereas the flow is dominated by hydraulic
dynamics at a later stage. A complete understanding of
the wave breaking is important for making the predic-
tion of when the severe wind state will occur.

In above-mentioned studies of severe downslope
windstorms, the nondimensional critical level height (z̃c)
is used as an indicator to determine the high-drag states.
Based on the linear theory developed in Part I, z̃c with
the strongest low-level response is strongly dependent
on the Richardson number (Ri) (Fig. 5 of Part I), where-
as the nondimensional depth of the lower uniform flow
layer (z̃1) with the strongest low-level response is almost
independent of Ri when N is uniform or N2/N1 K 1
(Figs. 4a and Fig. 6c of Part I, respectively). It is also
found in Part I that z̃c plays a dominant role in the phase
of the reflected waves. This implies that z̃1 may serve
as a better parameter than the nondimensional critical
level height (z̃c) as an indicator to determine the optimal
condition for the occurrence of high-drag states, such
as that adopted in earlier studies. Based on the linear
wave-ducting theory developed in Part I and nonlinear
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modeling simulations, we will try to use this new pa-
rameter to examine the results from a number of earlier
studies of severe downslope windstorms and to clarify
the discrepancies between them.

In the wave-breaking region, the static stability is
significantly reduced because the air there is well mixed.
This, in turn, will give a very low Richardson number
in the wave-breaking region or the dead region as de-
scribed by S85. With the wave-induced critical level
and the resulting structure of static stability and hori-
zontal wind velocity, the flow configuration is similar
to that of Lindzen and Tung (1976, hereafter LT76).
This type of flow configuration has also been depicted
in Fig. 1 of Part I (Wang and Lin 1998) of this series
of papers, which is also similar to that in CP84, but
with a constant shear and low Brunt–Väisälä frequency
in the middle layer. BP88 has adopted the same wind
profile, but with no variation in Brunt–Väisälä frequen-
cy. As reviewed in Part I, LT76 showed that the lower
stable layer adjacent to the surface may serve as a wave
duct under certain conditions. For example, a wave duct
may exist if the lower stable layer is capped by a dy-
namically unstable layer with Ri , ¼ and the duct has
a depth of (¼ 1 n/2)l. LT76’s linear wave-ducting
mechanism was extended to more general linear criteria
in Part I. In this study, we hypothesize that the wave-
ducting mechanism may help the flow to develop from
the onset of wave breaking into a severe wind state.

Scinocca and Peltier (1993), using a triple-nested-grid
numerical model initialized with Long’s analytical so-
lution, identified three distinct stages for the develop-
ment of downslope windstorms. In the first stage, local
convection acts to neutralize the region of overturned
streamlines, producing a pool of well-mixed fluid aloft.
In the second stage of development, a well-defined
large-amplitude stationary disturbance is generated over
the lee slope. In time, small-scale secondary Kelvin–
Helmholtz (K–H) (shear) instability develops in local
regions of enhanced shear associated with flow pertur-
bations caused by the large-amplitude disturbance. Dur-
ing the third stage of development, the region of en-
hanced wind on the lee slope expands in the downstream
direction, eliminating the perturbative structure asso-
ciated with the large-amplitude stationary disturbance.
Shear instability comes to dominate the flow in the ma-
ture windstorm state. The analysis by Laprise and Peltier
(1989a,b) and Scinocca and Peltier (1993) provides
some physical insights into the detailed structure of the
flow response at each stage of development of severe
downslope windstorms. In this study, we will apply the
wave-ducting mechanism to explain the second and
third statge of severe downslope winds as proposed by
Scinocca and Peltier (1993).

The objectives of this study are to 1) clarify the dis-
crepancies among various studies of severe downslope
windstorms, 2) investigate the nonlinear and critical lev-
el effects on the selection of high-drag states from linear
wave duct modes, and 3) apply the nonlinear wave-

ducting mechanism to the development of high-drag
states associated with severe downslope windstorms.
Both linear theory and systematic nonlinear numerical
simulations will be used in this study. The linear analysis
is based on the wave-ducting theory developed in Part
I. The paper is organized as follows. The numerical
model is briefly described in section 2. Section 3 dis-
cusses the sensitivity of the low-level response to the
height of the basic-state critical level and the depth of
the lower uniform flow layer. The nonlinear effects on
the selection of linear wave duct modes into high-drag
states will be studied in section 4. In section 5, the
nonlinear wave-ducting mechanism will be applied to
the formation of high-drag states associated with severe
downslope windstorms. The concluding remarks can be
found in section 6.

2. The nonlinear numerical model

To answer the questions addressed in the introduction,
we adopt the simple nonlinear numerical model used by
Lin and Wang (1996). This two-dimensional, hydro-
static version of the North Carolina State University
geophysical fluid dynamics model integrates the non-
linear primitive equations governing orographically
forced finite-amplitude perturbations in a uniform, non-
rotating, stratified, hydrostatic, Boussinesq flow. A brief
summary of this model can be found in Part I of this
study, and the details are given in Lin and Wang (1996)
and Weglarz (1994). To simulate flow over mountains,
a terrain-following vertical coordinate is adopted in the
model. The vertical coordinate is defined as s 5 zt(z
2 zs)/(zt 2 zs), where zs is the surface height and zt is
the top of the computational domain. Thus, the govern-
ing equations are expressed in the (x, s) space, instead
of in the (x, z) space. In analyzing the numerical results
from terrain-following models, these effects need to be
taken into consideration in comparing with the results
predicted by a linear theory in the (x, z) domain. For
example, in a linear theory, the lower boundary con-
dition is applied at z 5 0. Thus, the height of the lower
layer (z1) for strongest low-level responses in a two-
dimensional, nonrotating, continuously stratified flow
over an isolated mountain predicted by the linear theory
should be taken as s1 in an (x, s) coordinate system
because the lower boundary condition is applied at the
terrain surface (s 5 0).

3. Sensitivity of low-level response on z̃t and z̃c

One of the questions we would like to address is
whether z̃c (the wave-induced critical level) is an ap-
propriate indicator to determine the optimal conditions
for the occurrence of high-drag states or not. As dis-
cussed in the introduction, we propose to use z̃1 (the
depth of the lower uniform wind layer) as the indicator
because the phase of the reflected waves is primarily
determined by z̃1 (Part I). To study this problem, we
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performed a series of systematic experiments with a
three-layer flow configuration as shown in Fig. 1 of Part
I. The results are shown in Fig. 1 in the present paper.
The parameters used in these experiments are similar to
those used in DK87 where N1 5 N2 5 N3 5 0.01047
s21, U1 5 20 m s21, U3 5 0 m s21, Uz 5 0.01 s21, zc

2 z1 5 2 km, and z2 5 zc. The Ri associated with this
flow is about 1.0. There are three sets of experiments
with h̃ 5 1/Fr 5 N1h/U1 5 0.714, 0.5, 0.333, respec-
tively, where Fr is the Froude number. For each set of
experiments, the nondimensional depth above the moun-
tain peak of the uniform wind layer in the terrain-fol-
lowing coordinates ( ) varies from 0.125 to 1.5, wheres̃1

is normalized by 2pU1/N1. The surface drag, nor-s̃1

malized by prU1N1h2/4, is shown in Fig. 1a. The results
in Fig. 5 of CP84, Fig. 2 of BP88, and Table 1 of DK87
are also plotted. As previously stated, they used z̃c as
an indicator to determine the optimal conditions for the
occurrence of high-drag states.

As mentioned earlier, we hypothesize that the wave-
ducting mechanism plays important roles in the for-
mation of high-drag states associated with severe down-
slope windstorms. If this is true, then the height of the
lower unform wind layer (z̃1) is a better indicator than
the critical level height (z̃c). In the terrain-following
coordinates, the transformation factor needs to be con-
sidered. Thus, the depth of the lower uniform wind layer
over the mountain peak in the terrain-following coor-
dinates ( ) should be a better indicator than . Thes̃ s̃1 c

use of is also necessary for comparing results froms̃1

linear theory (in which the lower boundary is applied
at z 5 0) and nonlinear terrain-following numerical
models. Note that these heights ( and ) do not cor-s̃ s̃c 1

respond directly to the upstream (H0) or downstream
(H1) dividing streamline height in S85’s model. A care-
ful inspection of the isentropes of the 1972 Boulder
windstorm (Lilly 1978) shows that the top of the lower
layer does start to descend from above the mountain
peak (i.e., the continental divide). Similar results can
also be found from nonlinear numerical simulations,
such as Fig. 28 of Peltier and Clark (1979) and Fig. 10
of Durran (1986). The relationship between and z̃cs̃1

may be written

z̃ 2 b̃ 2 h̃ /2pcs̃ 5 . (1)1 1 2 h̃ /(2p z̃ )t

The tildes denote nondimensional values, where b is zc

2 z1 in the uniform shear case used in this study and
DK87 or the half-width of the shear layer in a hyperbolic
tangent wind profile used in CP84 and BP88. We define
the high-drag state, based on the flow structure from the
numerical results (not shown), as those with a normal-
ized surface drag greater than 2. Assuming h̃/2p K z̃t,
it may be derived that is related to z̃1 and h̃ by thes̃1

following relationship:

5 z̃12h̃/2p .s̃1 (2)

For convenience, the tildes will be dropped in the rest
of text except in the concluding remarks.

The quasi-steady-state normalized surface wave drag
as a function of s1 and zc from the present nonlinear
model simulations is shown in Figs. 1a and 1b, respec-
tively. Figure 1a indicates that high-drag states exist for
s1 5 0.125, 0.25, 1.25, 1.375, and h 5 0.333 (curve
with closed squares); s1 5 0.125, 0.25, 0.375, 1.25,
1.375, and h 5 0.5 (open squares); and s1 5 0.125,
0.25, 0.375, 0.5, 1.25, 1.375, 1.5, and h 5 0.714 (closed
circles). Results from other nonlinear numerical simu-
lations, such as CP84, DK87, and BP88, have also been
plotted using the new control parameter (s1). It appears
that the predictions of both high- and low-drag states
from CP84, DK87, BP88, and the present model by
using s1 as the control parameter are consistent. Thus,
the use of the lower-layer depth appears to better follow
a more consistent pattern. This also provides evidence
that a wave-ducting mechanism plays an important role
in producing high-drag states. In addition, this may im-
ply that discrepancies among the above-mentioned stud-
ies are due to a choice of different Ri (2.25 for CP84
vs 1.0 for DK87 and BP88) as well as different velocity
profiles (tanh in CP84 and PB88 vs piecewise linear in
DK87). In fact, this dependence of flow response to Ri
has also been discussed by Scinocca and Peltier (1991),
Durran (1993), and Peltier (1993).

In Fig. 1a, when s1 5 0.5, the high-drag state exists
for h 5 0.714, but not for h 5 0.5. This was explained
as a ‘‘resonant shift’’ by BP88. However, we interpret
it in a different way. Based on the linear wave-ducting
theory developed in Part I, the strongest low-level re-
sponse occurs when s1 5 0.175 1 n/2, n 5 0, 1, 2, . . .
for Ri . 1. As s1 increases from 0.175 1 n/2 to 0.675
1 n/2, the low-level response weakens and the critical
nondimensional mountain height (h) for wave breaking
increases. According to our results, all cases with h .
0.2 and s1 5 0.125, 0.25 belong to high-drag states,
which is consistent with the results of other studies (Fig.
1a). However, for s1 5 0.375, a high-drag state occurs
only when h . 0.4, whereas for s1 5 0.5, it requires
h . 0.7. This h may be called the critical h for a par-
ticular s1. This tendency may also be applied to cases
with s1 . 1.25, where the critical h increases as s1

increases to the next optimal s1. According to linear
theory, the strongest response should repeat itself every
half vertical wavelength for a given Ri. Another ques-
tion may be raised: why does the high-drag state dis-
appear for s1 5 0.675? This absence of a high-drag
state may pose a major problem in applying the linear
wave-ducting theory to explain the formation of high-
drag states associated with severe downslope wind-
storms. In fact, this question is related to the nonlinear
effects in the presence of a basic-state critical level. This
will be discussed in section 4. Here we focus on re-
solving the question of whether zc is an appropriate
indicator to determine the optimal conditions for the
occurrence of high-drag states or not.
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FIG. 1. Steady-state normalized surface wave drag as a function of (a) the nondimensional z1 in terrain-following
coordinates (s1) and (b) the nondimensional critical-level height zc. Here, CP, DK, BP, and WL denote the results from
CP84, DK87, BP88, and the present model (Wang and Lin), respectively. The number after DK and WL indicates the
value of h. The Ri is 1.0 in these experiments.
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Figure 1b shows the quasi-steady-state normalized
surface drag, similar to Fig. 1a, except using the non-
dimensional critical-level height (zc) as the independent
variable instead of s1. Note that zc has been used by
the aforementioned authors (e.g., CP84, S85, DK87, and
BP88) as an indicator to determine the occurrence of
high-drag states associated with severe downslope wind-
storms. There exist numerous discrepancies among
these results. For example, when zc 5 0.85, a high-drag
state (drag 5 4.8) exists for h 5 0.75 in CP84, but it
is a low-drag state (drag 5 0.2) for h 5 0.7 in DK87.
Another example is that when zc 5 0.75, both CP84 (h
5 0.75) and DK87 are at high-drag states for h 5 0.7
(drag 5 5.2 and 4.0), but our result (denoted as WL in
the figure) for h 5 0.714 is at a low-drag state (drag 5
0.2). Another major feature in Fig. 1b is that the high-
drag state can occur in a very wide range of zc, instead
of only being possible when zc 5 ¾ 1 n, n 5 0, 1,
2, . . . as proposed by CP84. Based on the above results,
our explanation is that once the wavebreaking occurs,
it induces a critical level and establishes a flow config-
uration favorable for wave ducting in the lower uniform
wind layer. Thus, the low-level flow response is sen-
sitive to the lower-layer height, instead of the critical-
level height. This, in turn, implies that using the depth
of the lower uniform wind layer is a better indicator
than the critical-level height to determine the optimal
conditions for the occurrence of high-drag states.

Before proceeding, one may wonder if these critical
h curves (Fig. 1a) for different s1 can be applied to all
nonrotating flow with a basic-state critical level over a
two-dimensional mountain. Because all of these results
are obtained for Ri 5 1, except in CP84 where Ri 5
2.25, the answer is no. According to the linear wave-
ducting theory developed in Part I, the low-level flow
response is dependent on both Ri and z1(s1). As men-
tioned earlier, the dependence of low-level flow re-
sponse on Ri has also been found by Scinocca and Pel-
tier (1991). For example, for Ri . 0.25 and fixed s1,
the magnitude of the strongest low-level response de-
creases as Ri increases. Therefore, the conclusions from
Fig. 1a apply only for a given Ri. To verify the results
obtained from our linear wave-ducting theory and to
generalize the criteria of critical h for determining high-
drag states, we performed more nonlinear numerical
simulations for a relatively wider range of Ri. Because
Ri 5 (N2/Uz)2, and the atmosphere is assumed to be
unstructured (N is constant), Ri is totally controlled by
wind shear (Uz). The effects of a structured atmosphere
will be discussed in a separate study. Figure 2 shows
the flow regimes of high- and low-drag states for basic
wind with a critical level over a two-dimensional moun-
tain ridge. We use four different values of sc 2 s1 (øzc

2 z1): 0.125, 0.25, 0.375, and 0.5. When s1 is fixed in
each set of experiments, the corresponding Ri’s are
about 0.62, 2.47, 5.55, and 9.87. A curve that separates
the high-drag (denoted by circles) and low-drag (de-
noted by crosses) states is drawn in each panel.

In Fig. 2a (s1 5 0.125), the flow may be characterized
as a high-drag state even for very low mountain (e.g.,
h 5 0.1) when Ri is small. For example, all cases are
in high-drag states when Ri 5 0.62. Note that the small-
est h is only 0.1, which represents a very small-ampli-
tude mountain. Note that it belongs to a high-drag state
regime even for such a low mountain when Ri 5 0.62.
When Ri 5 2.47, the critical h increases to be between
0.1 and 0.2. For h 5 0.1, the flow belongs to a low-
drag state when Ri 5 2.47, instead of high-drag state
when Ri 5 0.62. As Ri increases further, the critical h
for a high-drag state also increases. For Ri 5 5.55, the
critical h falls between 0.2 and 0.3, and when Ri 5
9.87, it falls between 0.3 and 0.4.

Figure 2b shows the flow regime diagram for s1 5
0.25. Similar to Fig. 2a, the critical h for high drag
increases as Ri increases. Overall, the critical h is higher
than those in Fig. 2a (s1 5 0.125). This trend of in-
creasing critical h with increasing Ri continues for s1

5 0.375 (Fig. 2c). The critical h for Ri 5 9.87 is be-
tween 0.6 and 0.7. This critical h is only slightly lower
than 0.85, which is the critical h for a high-drag state
to occur in a uniform, nonrotating, stratified flow over
a two-dimensional mountain ridge (Miles and Huppert
1969). This is consistent with the conclusion we drew
earlier in this section. That is, when s1 increases from
0.175 1 n/2 to 0.675 1 n/2, the critical mountain height
(h) for high-drag state increases.

The flow regime undergoes a dramatic change when
s1 increases to 0.5 and 0.75 (Figs. 2d and 2e). In Fig.
2d, the high-drag flow state exists only for Ri 5 0.62
and Ri 5 2.44 when h 5 0.7. For Ri 5 5.55 and 9.87,
the flow belongs to low-drag states when h 5 0.8
(ø0.85). In Fig. 2e, there exist no high-drag states at
all when h 5 0.8. When s1 5 1.25 (Fig. 2f), the regime
diagram is identical to that of s1 5 0.25 (Fig. 2b). Note
that for s1 5 1.25, the lower uniform wind layer con-
tains more than a vertical wavelength of the low-level
flow. To make comparison, results of CP84, DK87, and
BP88 are also replotted in Fig. 2, where h and l denote
the high- and low-drag states, respectively. Their results
are completely consistent with ours. Therefore, we may
conclude that for a nonrotating flow with uniform N and
a basic-state critical level over a two-dimensional moun-
tain: 1) The critical nondimensional mountain height (h)
for high-drag state increases as Ri increases when s1 is
fixed, 2) the critical h for high-drag state increases as
s1 increases from 0.175 1 n to 1.175 1 n when Ri is
fixed, and 3) the low-level response repeats periodically
at one vertical wavelength. This also provides evidence
that the wave ducting has played an important role in
generating high-drag states.

S85 solved the nonlinear, hydrostatic Long’s equation
for flow beneath a well-mixed wave-breaking region in
a high-drag state. The flow configuration of a quasi-
steady, high-drag state observed in the real atmosphere
(Lilly 1978) and simulated by numerical models (e.g.,
Peltier and Clark 1979; Durran and Klemp 1983) is
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FIG. 2. The flow regime chart in Ri–h map for the cases with (a) s1 5 0.125, (b) s1 5 0.25, (c) s1 5 0.375, (d)
s1 5 0.5, (e) s1 5 0.75, and (f ) s1 5 1.25. Circle and cross denote high- and low-drag state flow, respectively.
CP, BP, and DK have the same meaning as in Fig. 1 and the letters h and l after those denote the high- and low-
drag state flow, respectively.
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FIG. 3. The relationship of critical nondimensional mountain height
h and sc when s1 5 0.25, as predicted by the current model simu-
lations.

FIG. 4. The comparison of the magnitude of Umax from the nonlinear
numerical simulation (closed circles) with those from the linear an-
alytical solution (solid line) for h 5 0.02.

idealized. In S85’s model, the well-mixed region above
the layer of severe downslope wind is unspecified. By
assuming negligible disturbance above this well-mixed
region, the flow fields could be inferred along the lower
dividing streamline (i.e., the lower bounding stream-
line). Imposing this streamline as an upper boundary in
the problem, the flow below the well-mixed (stagnant)
region could then be determined. A regime diagram of
the nondimensional mountain heights (h) and upstream
height of the dividing streamline for a high-drag state
to occur, is then constructed in his Fig. 5 (S85). Ac-
cording to that regime diagram, the critical h for high-
drag state increases as the initial height of the dividing
streamline (denoted as Ĥ0 in S85) increases. S85’s the-
ory is confirmed numerically by DK87 and BP88. To
examine the present wave-ducting mechanism, we per-
form several numerical simulations with s1 5 0.25. Fig-
ure 3 shows that the critical nondimensional mountain
height (h) for high-drag state increases as the critical
level height (sc) increases. For small sc 2 s1, such as
from 0 to 0.125, the present result agrees well with S85’s
Fig. 5, if his upstream and downstream heights of the
dividing streamline (Ĥ0 and Ĥ1) are roughly approxi-
mated by sc and s1, respectively. This approximation
is only valid when sc 2 s1 is small because S85’s theory
does not account for the shear-layer depth. Thus, the
present model simulation results agree with S85’s find-
ing that the critical nondimensional mountain height for
high-drag state increases as the critical level height in-
creases, although our explanation is based on the wave-
ducting mechanism.

4. Nonlinear and critical level effects on the
selection of high-drag states from linear wave
duct modes

In this section, we will investigate why the high-drag
state does not exist when s1 5 0.675 in our numerical
simulations with a basic-state critical level and constant
N (Fig. 1a). This is contradictory to the fact that the
low-level disturbance is strongest when s1 5 0.175 1
n/2 for flow with the same basic-state configuration,
according to the linear wave-ducting theory developed
in Part I.

In order to understand the dynamics of this absence
of high-drag state at s1 5 0.675, we first perform a
number of nonlinear numerical simulations with h 5
0.02 and Ri 5 1 and compare the results with those
predicted by our linear wave-ducting theory. The non-
linearity at the lower boundary is insignificant because
h is very small. Figure 4 shows the maximum nondi-
mensional horizontal wind velocities (Umax 5 U1 1 umax)
over the lee surface, as predicted by both the present
nonlinear numerical model and linear wave-ducting the-
ory. It is obvious that these results agree fairly well,
and the numerical simulations do show the peaks at s1

5 0.175, 0.675, and 1.175. Note that there exists no
high-drag state for this h (0.02) in all nonlinear nonlinear
simulations presented here. However, if h is increased
slightly to 0.1, wave breaking occurs and produces a
high-drag state when s1 is located at various heights
according to the regime diagrams shown in Fig. 2. No-
tice that even though the lower layer is still linear, the
flow becomes more and more nonlinear as the basic-
state critical level is approached because the perturba-
tion horizontal wind speed can easily exceed the basic-
state wind speed (Bretherton 1966; Booker and Breth-
erton 1967). In other words, a slight increase of non-
linearity makes the selection of high-drag states from
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the linear wave duct modes. That is, not every linear
wave duct mode can develop into a high-drag state.

To understand the dynamics of this selection of high-
drag states from the linear wave duct modes, we apply
the linear wave-ducting theory developed in Part I to
investigate the flow responses. Figures 5a–c show the
horizontal perturbation wind fields from the linear an-
alytical solution [Eq. (34) of Part I] with Ri 5 9.87 and
h 5 0.5. The dimensional parameters used in these fig-
ures are U1 5 20 m s21, U3 5 2 0.02 m s21, N1 5 N2

5 N3 5 0.01047 s21, and h 5 955 m. Three cases with
z1 5 0.175, 0.675, and 1.175 are shown in Figs. 5a–c,
respectively. As can be inferred from the regime dia-
grams in Fig. 2, the flow is characterized as a high-drag
state when s1 5 0.175 and 1.175, and as a low-drag
state when s1 5 0.675. In all cases, the low-level (z ,
0.175) responses do exhibit almost identical patterns for
all three cases. However, the responses between z1 and
zc for cases with z1 5 0.175 and 1.175 are very different
from that with z1 5 0.675. In Figs. 5a and 5c, there
exists a region of positive horizontal perturbation wind
right above this level, which has a magnitude about the
same as that below z 5 z1. Above this region of positive
horizontal perturbation wind, there exists a much stron-
ger negative horizontal perturbation wind, which actu-
ally induces two other critical levels at z 5 0.45, 0.57
in the case with z1 5 0.175 (Fig. 5d) and at z 5 1.45,
1.57 in the case with z1 5 1.175 (Fig. 5f). In fact, a
closer inspection reveals that there are more new critical
levels being induced near the basic-state critical level.
The formation of these new critical levels may be ex-
plained by the decrease of vertical wavelength and the
increase of the horizontal perturbation wind as one ap-
proaches the basic-state critical level from below, based
on the linear theory (Bretherton 1966; Booker and
Bretherton 1967). In fact, it can be shown that u oscil-
lates and approaches ` near the basic-state critical level
in a linear, steady-state flow over an isolated mountain
(Smith 1986) and over a heat source (Lin 1987). In other
words, the nonlinear effects become stronger as the ba-
sic-state critical level is approached. The corresponding
vertical static stability profile at x 5 0 from steady-state
analytical solutions is also plotted in Figs. 5d and 5f.
We find that there exists an unstable region between the
lowest two new critical levels. This unstable region al-
lows the wave duct mode to develop further into a high-
drag state. The development of these two high-drag
states (z1 5 0.175, 1.175) from the corresponding linear
wave duct modes has also been verified by the animation
of the numerical results (not shown).

When z1 5 0.675 (Fig. 5b), the flow response between
z1 and zc is totally opposite from those in Figs. 5a and
5c. Above z 5 z1, there exists a region of negative
horizontal perturbation wind, which is capped by a much
stronger positive perturbation wind. Further aloft, there
likely exists an even stronger negative perturbation wind
region with a much shorter vertical wavelength because
it is closer to the basic-state critical level. Similar to

cases with z1 5 0.175 and 1.175, more new critical
levels are also being induced, such as at z 5 1.08 and
1.14 (Fig. 5e). However, according to the vertical profile
of static stability, there exists a very stable layer (N 5
0.02 s21 at about z 5 1.03) above the lower uniform
wind layer. According to the linear wave-ducting theory,
the static stability of the shear layer must be equal or
less than that of the lower uniform wind layer. Thus,
this highly stratified layer plays a role in suppressing
the development of a high-drag state from the wave duct
mode.

The formation of these new stable or unstable layers
may be understood through the linear theory. The
steady-state, small-amplitude equations in the shear lay-
er used in deriving the above solutions are [Eqs. (5)–
(8) of Part I],

]u ]f
U 1 U w 1 5 0, (3)z]x ]x

]f
5 b, (4)

]z

]u ]w
1 5 0, (5)

]x ]z

]b
2U 1 N w 5 0. (6)2]x

The basic-state Brunt–Väisälä frequency in this layer is
represented by N2. Differentiating (6) with respect to z
and using (5) leads to

2]u N u2 05 u. (7)1 2]z gU

In deriving the above equation, the relationship between
the perturbation bouyancy (b) and the perturbation po-
tential temperature, b 5 gu/u0, has been used. The total
Brunt–Väisälä frequency (Nt) can be obtained,

g ]u g ] g ]ut2 2N 5 5 (u 1 u) 5 N 1 , (8)t 2u ]z u ]z u ]z0 0 0

where the subscript t denotes the total value of the flow
variable. Note that the total Brunt–Väisälä frequency is
denoted by N 2(z) in Fig. 5. Now, we may substitute Eq.
(7) into Eq. (8), which leads to

u
2 2N 5 N 1 1 . (9)t 21 2U

Therefore, the basic-state Brunt–Väisälä frequency
( ) is modified by the strength of the nonlinearity, u/2N 2

U. If U is positive in the shear layer, which is what we
have in the present case, then is proportional to the2N t

perturbation wind velocity (u) and has the same sign.
This explains the in-phase relationship of and u in2N t

Figs. 5d–f. In addition, increases as one approaches2N t

the basic-state critical level because u increases, too.
From the above discussions, we may conclude that if
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a very stable layer is induced above s1, then the linear
wave duct mode tends to be suppressed and the flow
cannot develop into a high-drag state. On the other hand,
if an unstable layer is induced above s1, then the linear
wave duct mode may further develop into a high-drag
state.

5. Implications of the nonlinear wave-ducting
mechanism for the development of high-drag
states

Because wave breaking is simply forced by the highly
nonlinear lower boundary forcing and can be predicted
by Long’s (1953) solution in cases with uniform flow,
we will focus on the stages after the occurrence of the
‘‘wave-induced critical level.’’ According to Long’s so-
lution, when the nondimensional mountain height reach-
es its critical value (h 5 0.85), there exists a wind re-
versal level at z 5 ¾l, and the streamline in the region
is almost vertical. The presence of this nearly neutral
region, along with the presence of vertical shear, makes
it possible for Ri to be less than one-quarter in the
vicinity of the wave-induced critical level, which is a
necessary condition for Kelvin–Helmholtz (shear or dy-
namical) instability to occur. According to our calcu-
lation in Fig. 7a of Part I, the reflectivity is very close
to 1 when the static stability near the critical level be-
comes neutral. Note that the reflectivity in this region
can be greater or less than 1 depending upon the value
of Ri. The smaller Ri is, the larger the reflectivity.

Figure 6 shows the time sequence of horizontal wind
fields during the development of a high-drag state for
a flow with uniform wind and constant static stability.
In this case, h is 1, which is characterized as a high-
drag state because h . 0.85 (Miles and Huppert 1969;
Lin and Wang 1996). Figure 6a shows the horizontal
wind at the time just before flow stagnation aloft (wave
breaking) occurs. At this stage, the flow pattern is close
to that predicted by Long’s solution and there exists no
region with Ri , 0.25. Figure 6b shows the results
shortly after the occurrence of wave breaking. Regions
with local Ri , 0.25 are superimposed on the horizontal
wind fields of Fig. 6. This wave breaking or turbulent
mixing region is expanding downward and downstream
due to strong nonlinear effects on the flow with low Ri
near the critical level, as shown later (Fig. 8). Once
wave breaking occurs, it may establish a wave duct
below the turbulent mixing region (also called dead re-
gion in S85) and above the lee slope. Associated with
the downward and downstream expansion of the tur-
bulent mixing region, the wave duct becomes shallower
(Fig. 6c). This is explained by the interaction of non-
linearity and the strong wave reflection, which will be
shown later. When the depth of the wave duct is reduced,
the wave will accelerate and propagate further down-
stream due to nonlinear advection, as shown in Lin and
Wang (1996), and the trapping of wave energy between
the turbulent mixing layer and lee slope (Part I). Note

that the expansion of the turbulent mixing region (where
Ri , 0.25) provides a maintenance mechanism for the
existence of the wave duct below it and above the lee
slope, because the reflectivity in this region is about 1
according to the linear theory. Without this almost per-
fect reflector, the wave below it cannot be maintained
and would lose most of its energy due to dispersion.

This development stage of severe downslope wind-
storms is supported by the nonlinear wave ducting
mechanism since the nonlinear advection plays a sig-
nificant role in broadening the turbulent mixing region.
Note that the general linear criteria for wave duct to
occur (Part I) may still provide a very useful guidance
in identifying potential wave duct modes. Whether these
linear wave duct modes can further develop into high-
drag state or not depends upon the modification of the
flow structure by nonlinear and critical level effects, as
proved in last section. The stable layer below the tur-
bulent mixing region is kept at a depth of about ¼l
when the internal hydraulic jump propagates down-
stream. As first proposed by LT76, and generalized in
Part I (see Fig. 5c of that paper), such a depth is optimal
for a wave duct in cases with an almost neutral layer
in the shear layer. Using a weakly nonlinear theory,
Grimshaw and Smyth (1986) also showed that the ini-
tiation of a high-drag transitional flow begins with linear
resonance. Once the nonlinear effects have been taken
into consideration and the low-drag states (such as s1

5 0.175 1 n/2) have been ruled out from the linear
wave duct modes, the depth of the lower uniform flow
layer for high-drag state (such as s1 5 0.175 1 n), is
consistent with what is predicted by linear wave-ducting
theory.

As briefly reviewed in the introduction, Scinocca and
Peltier (1993) have suggested that the drag and surface
wind begin to increase in their second stage of the de-
velopment of severe downslope windstorms. Figure 7
shows the time evolution of the normalized surface drag,
the maximum horizontal wind velocity (Umax) at the lee
surface, and the minimum horizontal wind velocity
(Umin) aloft. This figure indicates that the flow stagnation
aloft or wave breaking (Umin 5 0) occurs at about Ut/
a 5 0. The surface drag and Umax at this time are about
2.5 and 2.2, respectively. The maximum horizontal wind
velocity predicted by Long’s solution (not shown) for
this case (h 5 1) is also 2.2. Note that the maximum
wind velocity at the final time of the simulation (Ut/a
5 50.4) is about 2.6, which is not much larger than the
value 2.2 at Ut/a 5 10. However, the surface drag keeps
increasing until the quasi-mature state (Ut/a 5 40) is
reached. The quasi-mature state is defined as the time
when the maximum surface wind over the lee slope
reaches a quasi-steady value. The drag at the end of the
simulation is about 3.9 (Ut/a 5 50.4), although the
strongest value is about 4.3 at Ut/a 5 40. The increase
in drag during this stage may be explained by the strong
vertical wind associated with the internal hydraulic jump
because the drag is proportional to the horizontal in-
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FIG. 6. Time sequence of horizontal wind field superimposed with the contours of local Ri , 0.25 (thick line) at nondimensional time
Ut/a 5 (a) 9.8, (b) 12.6, (c) 19.6, and (d) 50.4. The nondimensional contour interval is 0.2 and the maximum value near the surface in (c)
is 2.4.

tegration of the vertical flux of horizontal momentum
(uw). The increase of the strongest wind velocity from
2.2 at Ut/a 5 10 to 2.6 at Ut/a 5 14 is due to the
nonlinear advection associated with strong horizontal
wind over the lee slope (Lin and Wang 1996).

We now investigate the process responsible for the
downward and downstream expansion of the turbulent
mixing region during the development of a severe down-
slope windstorm. This will reduce the depth of the lower
uniform wind layer or the wave duct. We hypothesize

that this flow behavior is due to the nonlinear effects.
To verify this hypothesis, we perform both nonlinear
and linear numerical simulations in a flow with a basic-
state critical level at s 5 0.75 embedded in a shear layer
between 0.25 and 0.75, which has a nearly neutral static
stability (N2 5 0.0005 s21 in Fig. 1 of Part I). Note that
s 5 0.75 is the height where wave breaking is usually
observed in a uniform basic flow. This profile is used
to mimic the environment at the beginning of the de-
velopment stage of severe downslope windstorms. In
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FIG. 7. Time evolution of normalized surface drag, maximum, and
minimum horizontal wind velocities for the case in Fig. 6.

these simulations, we use h 5 0.5 and Ri 5 0.1. From
the linear wave-ducting theory developed in Part I, lin-
ear wave duct modes exist at s1 5 0.25 1 n/2 for this
particular flow configuration (see case 3 of Table 1, Part
I). From our nonlinear simulations (not shown), the lin-
ear wave duct modes of s1 5 0.25 1 n are able to
develop into high-drag mode, but not those of s1 5 0.25
1 n/2. Figures 8a and 8c show the potential temperature
and vertical velocity fields, respectively, from the non-
linear simulation at Ut/a 5 10. An internal hydraulic
jump forms and propagates to x 5 38 km, which is
located at the head of the downstream-propagating dis-
turbance over the lee slope. This is similar to the feature
observed at this stage in the real atmosphere, in which
a well-defined large-amplitude stationary disturbance is
developed. Furthermore, an upstream-propagating bore
is produced over the upslope at x 5 50 km. Such an
upstream bore is not observed in the uniform flow case
because there exists no neutral region or critical level
on the upstream side. The magnitude of the downstream
horizontal velocity is about five times larger than the
upstream value. In addition, according to the animation
of the flow field (not shown), both the upstream and
downstream waves are able to preserve their magnitudes
while propagating, which provides strong evidence that
the wave-ducting mechanism is at work, in addition to
the evidence shown in earlier sections.

Figures 8b and 8d show the potential temperature and
vertical velocity fields of the corresponding linear case.
Apparently, without the inclusion of nonlinearity, the
wave-breaking region does not expand downward to
reduce the depth of the lower uniform wind layer. This,
in turn, prohibits the formation of the severe downslope
wind and internal hydraulic jump. These results verify
our hypothesis that the downward and downstream ex-

pansion of the well-mixed region is due to nonlinear
effects. Lin and Wang (1996) also investigated the im-
portance of nonlinearity in the development of severe
downslope winds by calculating the nonlinear terms for
a uniform flow over a bell-shaped mountain with h 5
1. They found that, in the absence of nonlinear effects,
the downstream propagating jump is not able to develop.
The present results are consistent with their finding. The
case we show here is with h 5 0.5, which provides
enough nonlinearity for the linear ducted wave mode to
develop into a high-drag state. Note that this nondi-
mensional mountain height is less than the critical value
for the occurrence of a high-drag state in a uniform basic
flow. However, the downstream propagating internal hy-
draulic jump also cannot form in the absence of non-
linearity for such a wave duct mode, even though the
wave amplification is observed from a linear simulation
(Figs. 8b and 8d).

6. Concluding remarks

In this study, we tried to 1) clarify the discrepancies
among various studies of severe downslope windstorms,
2) investigate the nonlinear and critical-level effects on
the selection of linear wave duct modes into high-drag
states, and 3) apply the nonlinear wave-ducting mech-
anism to the development of high-drag states associated
with severe downslope windstorms. Both the linear
wave-ducting theory (Part I) and a nonlinear numerical
model were used to investigate the problem.

We found that the discrepancies among earlier studies
of severe downslope windstorms are caused by the use
of the critical level height (sc), instead of the depth of
the low-level uniform wind layer (s1), as an indicator
to determine the optimal conditions for the occurrence
of high-drag states. Our explanation is that once the
wave breaking occurs, it induces a critical level and
establishes a flow configuration favorable for wave duct-
ing to exist in the lower uniform wind layer. Thus, the
low-level flow response is much more sensitive to the
lower-layer height than to the critical-level height. This
sensitivity is due to the fact that the phase of the reflected
waves is primarily determined by z̃1 as found in Part I.
This, in turn, implies that using the depth of the lower
uniform wind layer is a better indicator than the critical-
level height to determine the optimal conditions for the
occurrence of high-drag states. The predictions from
CP84, DK87, BP88, and our present model, for both
high- and low-drag states by using s1 as the control
parameter are consistent. Thus, the use of the lower
uniform wind–layer depth appears to better follow a
more consistent pattern. This also provides evidence that
the wave-ducting mechanism plays an important role in
producing high-drag states.

Flow regimes of high- and low-drag states for a two-
dimensional, nonrotating flow with a basic-state critical
level and uniform N over a two-dimensional mountain
were also determined as functions of nondimensional
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FIG. 8. (a) Potential temperature field from nonlinear numerical simulations with Ri 5 0.1 and h 5 0.5. (b) Same as (a) except from linear
numerical simulations. (c) and (d) Same as (a) and (b), respectively, except for vertical velocity field. The contours in (a) and (b) are from
273 to 298 K and from 268 to 297 K, respectively. The contour interval is 1 K in both (a) and (b). The contours in (c) are from 22.7 to
10.8 m s21 with an interval of 0.9 m s21, and are from 214 to 6 m s21 with an interval of 1 m s21 in (d).

mountain height (h̃), Ri, and nondimensional lower-lay-
er depth ( ) by a series of numerical experiments. Wes̃1

found that 1) the critical h̃ for the high-drag state in-
creases as Ri increases when is fixed, 2) the criticals̃1

h̃ for the high-drag state increases as increases froms̃1

0.175 1 n to 1.175 1 n when Ri is fixed, and 3) the
low-level response repeats periodically at one vertical
wavelength. This also provides additional evidence that
the wave ducting has played an important role in gen-

erating high-drag states. The present model simulation
results agreed with S85’s finding that the critical h̃ for
the high-drag state increases as the critical-level height
increases when the shear-layer depth is small, although
our explanation was based on the wave-ducting mech-
anism, which applied to the development stage of a
severe downslope windstorm, instead of at the mature
stage. The selection of high-drag states ( 5 0.175 1s̃1

n) from the linear wave duct modes ( 5 0.175 1 n/2)s̃1
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is due to the nonlinear and critical-level effects. In other
words, an increase of nonlinearity makes the selection
of high-drag states from the linear wave duct modes.
That is, not every linear wave duct mode can develop
into a high-drag state. We found that if a very stable
layer is induced above (such as 5 0.675 1 n),s̃ s̃1 1

then the linear wave duct mode tends to be suppressed
and the flow cannot develop into a high-drag state be-
cause the wave-ducting structure is destroyed. On the
other hand, if an unstable layer is induced above s̃1

(such as 5 0.175 1 n), then the linear wave ducts̃1

mode may further develop into a high-drag state.
It was found that once the wave breaking occurs, it

may establish a wave duct below the lower boundary
of the turbulent mixing region (also called the ‘‘dead
region’’ in S85) and the lee slope. Strong nonlinear
effects on this turbulent mixing region coupled with low
Ri force this region to expand downward and down-
stream. Associated with this downward and downstream
expansion of the turbulent mixing region, the wave duct
becomes shallower. This is explained by the interaction
of nonlinearity and the strong wave reflection. When
the depth of the wave duct is reduced, the disturbance
will accelerate and propagate further downstream as a
hydraulic jump due to nonlinear advection, as shown in
Lin and Wang (1996), and the trapping of wave energy
between the turbulent mixing layer and lee slope (Part
I). Note that the expansion of the well-mixed region
(where Ri , 0.25) helps maintain the wave duct below
it, because the reflectivity in this region is about 1 ac-
cording to the linear wave-ducting theory (Part I). With-
out this almost perfect reflector, the wave below it can-
not be maintained due to dispersion. This development
stage of high-drag or severe wind state is supported by
the nonlinear wave-ducting mechanism since the non-
linear advection plays a significant role in broadening
the turbulent mixing region. At the mature stage of a
severe downslope windstorm, the high-drag state is
maintained by the hydraulic mechanism, as proposed by
S85 and confirmed numerically by DK87 and BP88.

The development stage of severe downslope wind-
storm proposed in this study is related to the second
and third stages proposed by Scinocca and Peltier
(1993). In some sense, this is also related to the partial
reflection mechanism (Klemp and Lilly 1975) and the
resonant amplification mechanism (Peltier and Clark
1979; CP84). However, our explanation is based on the
nonlinear wave-ducting mechanism. There is no conflict
between the nonlinear wave-ducting mechanism and the
hydraulic mechanism proposed (S85) because they play
different roles at different stages of severe downslope
windstorms. This is why S85’s theory offered an ex-
cellent consistency analysis of a severe wind configu-
ration, whereas our nonlinear wave-ducting mechanism
may provide help in making a prediction of when a high-
drag state will occur.

In order to apply the present nonlinear wave-ducting
mechanism derived from an idealized three-layer at-

mosphere to predict severe downslope windstorms in
the real atmosphere, a more realistic and complicated
basic-state environment needs to be considered. For ex-
ample, in the arguments presented in this paper, we have
assumed that z1 for maximum low-level responses is
independent of Ri. Strictly speaking, this assumption is
valid only when N is uniform or N2/N1 K 1, according
to the linear wave-ducting theory developed in Part I.
Thus, it is important to examine the nonlinear wave-
ducting mechanism in a more general three-layer at-
mosphere.
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